MR0254844 (40 #8051) 55.40
Dugundji, J. [Dugundji, James]
Modified Vietoris theorems for homotopy.

S. Smale’s Vietoris theorem for homotopy [Proc. Amer. Math. Soc. 8 (1957), 604–610; MR0087106 (19,302f)] imposes local connectivity conditions on the fibers of the given map \(p: X \rightarrow Y \); the present paper offers versions that depend on the manner in which the fibers of \(p \) are embedded in \(X \), rather than on their actual structure. These versions result from a careful study of the homotopy condition on the embedding of the fibers which was considered by T. M. Price [Notices Amer. Math. Soc. 14 (1967), 274, Abstract 67T-197]: A subset \(A \) of a \(T_2 \) space \(X \) is called \(\text{PC}_X^n \) if for each neighborhood \(U \) of \(A \) in \(X \) there is a neighborhood \(V \) of \(A, V \subset U \), such that each map of an \(r \)-sphere into \(V \) has an extension mapping the \((r+1)\)-cell into \(U \), \(0 \leq r \leq n \).

Applications include a proof of the generalization of Smale’s theorem announced by G. Kozlowski [ibid. 15 (1968), 560, Abstract 68T-406] plus the theorems quoted below, on homotopy excision and on Serre fibrations:

Let \(X \) be paracompact and \(A \subset X \) a closed \(\text{PC}_X^n \) subset. Let \(p: X \rightarrow X/A \) be the projection. If \(X/A \) is dominated by a polytope, then \(p_*: \pi_i(X) \rightarrow \pi_i(X/A) \) is an isomorphism for \(0 \leq i \leq n \) and is epic for \(i = n + 1 \).

Let \(E \) be compact, \(B \) a polytope and \((E, p, B)\) a Serre fibration. Then every fiber is \(\text{PC}_X^n \) if and only if every fiber is \(n \)-connected.

Reviewed by George McCarty

© Copyright American Mathematical Society 1970, 2011