VIETORIS-BEGLE THEOREM AND SPECTRA

JERZY DYDAK AND GEORGE KOZLOWSKI

(Communicated by James E. West)

Abstract. The following generalization of the Vietoris-Begle Theorem is proved: Suppose \(\{E_k\}_{k \geq 1} \) is a CW spectrum and \(f: X' \to X \) is a closed surjective map of paracompact Hausdorff spaces such that \(\text{Ind } X = m < \infty \).

If \(f^*: E^k(\mathcal{U}_k) \to E^k(f^{-1}(\mathcal{U}_k)) \) is an isomorphism for all \(x \in X \) and \(k = m_0, m_0 + 1, \ldots, m_0 + m \), then \(f^*: E^n(X) \to E^n(X') \) is an isomorphism and \(f^*: E^{n+1}(X) \to E^{n+1}(X') \) is a monomorphism for \(n = m_0 + m \).

Given a CW spectrum \(E = \{E_k\}_{k \geq 1} \) and a pointed CW complex \(K \), one has cohomology groups \(E^n(K) \) for each integer \(n \) (see [Sw, Chapter 8]). They are defined as homotopy classes from the suspension spectrum of \(K \) to \(\Sigma^n E \), where \(\Sigma^n E \) is defined by \(\Sigma^n E_k = E_{k+n} \). In the case of an \(\Omega \)-spectrum (i.e., where the natural map \(E_k \to \Omega E_{k+1} \) is a homotopy equivalence for all \(k \)), \(E^n(K) \) is isomorphic to \([K, E_n] \) (see [Sw, Theorem 8.42]). The groups \(E^n(X), X \) being any pointed topological space, are defined as \(\text{dirlim}\{E^n(X_\alpha), p_{\alpha\beta}^*, \Lambda\} \), where \(\{X_\alpha, p_{\alpha\beta}, \Lambda\} \) is the Čech system of \(X \) (see [D-S, p. 21] for the definition of the Čech system of \(X \)). In this way one gets the Čech extension of the functor \(E^n \) from pointed CW complexes to pointed spaces (see [D] for a general discussion of Čech extensions of functors). Again, if \(\{E_k\}_{k \geq 1} \) is an \(\Omega \)-spectrum, then \(E^n(X) \) is isomorphic to \([X, E_n] \). A basic result is that every spectrum \(\{E_k\}_{k \geq 1} \) is isomorphic to an \(\Omega \)-spectrum (see [B, part 10 of Chapter II]). Essentially, the \(n \)th term of that spectrum is the telescope of \(E_n \to \Omega E_{n+1} \to \Omega^2 E_{n+2} \to \cdots \).

In the case of an unpointed topological space \(X \), we define the unreduced cohomology \(E^n(X) \) as \(E^n(X^+) \), where \(X^+ \) is \(X \) with a discrete base point added.

Recall the classical Vietoris-Begle Theorem (see [S, p. 344]):

Vietoris-Begle Theorem. Let \(f: X' \to X \) be a closed surjective map of paracompact Hausdorff spaces. Assume that there is an \(n \geq 0 \) such that \(\bar{H}^k(f^{-1}(x)) = 0 \) (reduced Čech cohomology) for all \(x \in X \) and for \(k < n \). Then \(f^*: H^k(X) \to H^k(X') \) is an isomorphism for \(k < n \) and a monomorphism for \(k = n \).

Received by the editors February 18, 1990 and, in revised form, March 29, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 55N05; Secondary 55N20, 55P20.

Key words and phrases. Vietoris-Begle theorem, spectra, cohomology.

©1991 American Mathematical Society

0002-9939/91 $1.00 + .25 per page

587
A natural question arises: Since Čech cohomology corresponds to the Eilenberg-MacLane spectrum \(\{K(G, k)\}_{k \geq 1} \), is there a generalization of the above theorem to arbitrary spectra?

The naive approach of replacing \(H^k(f^{-1}(x)) = 0 \) by \(E^k(f^{-1}(x)) \approx E^k(\{x\}) \) does not work. An example of that is Taylor's cell-like map (see [T]) \(f: X \to Q \) onto the Hilbert cube \(Q \) such that \(\tilde{K}(X) \) is nonzero (\(\tilde{K} \) is the reduced complex \(K \) theory which is the cohomology theory of the spectrum \(BU \), the periodic spectrum \(U, BU, \ldots \)). This example was later modified by J. Keesling [K] who produced a cell-like map \(g: Q \to Y \) with \(\tilde{K}(Y) \neq 0 \).

The aim of this paper is to prove suitable generalizations of the Vietoris-Begle Theorem involving arbitrary unreduced spectral cohomology. In this task we were guided by Kozlowski's result (see [Ko] or [D-S]) proved in 1975.

Theorem (G. Kozlowski). For closed maps \(f: X \to Y \) of metrizable spaces such that \([f^{-1}(A), K] = [A, K] \) for any CW complex \(K \) and any closed subset \(A \) of \(Y \), the image \(Y \) is an ANR provided \(X \) as an ANR.

Kozlowski's proof involved a trick: he showed that certain maps from \(X \) to \(K \) can be extended over the mapping cylinder \(M(f) \) of \(f \). Then he replaced \(X \) by the double mapping cylinder \(DM(f) \) of \(f \) (the union of two copies of \(M(f) \) sewn along \(X \)) and used the previous construction to relate any two different extensions. The meaning of this trick is that it echoes the Mayer-Vietoris exact sequence (once you prove that a certain homomorphism is onto you get that the next one is trivial, for free). In this paper we formalize this observation: the trick becomes Lemma 3 (the mapping cone \(C_p \) of \(p: DM(f) \to Y \) is homeomorphic to the reduced suspension \(S(C_f) \) of the mapping cone of \(f \)) and the whole approach resembles a Puppe exact sequence. Notice that Theorem B implies the results of [D-K] (the goal of that paper was to unify Vietoris-Begle Theorem and cell-like maps on spaces of finite deformation dimension).

Theorem A. Suppose \(\{E_k\}_{k \geq 1} \) is a CW spectrum and \(f: X' \to X \) is a closed surjective map of paracompact Hausdorff spaces such that \(\text{Ind} X = m < \infty \). If \(f^*: E^n(x) \to E^n(f^{-1}(x)) \) is an isomorphism for all \(x \in X \) and \(n = m_0, m_0 + 1, \ldots, m_0 + m \), then \(f^*: E^n(X) \to E^n(X') \) is an isomorphism and \(f^*: E^{n+1}(X) \to E^{n+1}(X') \) is a monomorphism for \(n = m_0 + m \).

Remark. \(\text{Ind} X \) is the large inductive dimension of \(X \): \(\text{Ind} \emptyset = -1 \) and \(\text{Ind} X \leq m \) means that for any neighborhood \(U \) of a closed subset \(A \) of \(X \), there is a neighborhood \(V \) of \(A \) in \(U \) with \(\text{Ind}(\text{cl}(V) - V) \leq m - 1 \).

Theorem B. Suppose \(\{E_k\}_{k \geq 1} \) is a CW spectrum and \(f: X' \to X \) is a closed surjective map of paracompact Hausdorff spaces such that the following conditions are satisfied:

(a) \(f^*: E^{n-1}(A) \to E^{n-1}(f^{-1}(A)) \) is an epimorphism for all closed subsets \(A \) of \(X \), and
(b) \(f^* : E^n(A) \to E^n(f^{-1}(A)) \) is a monomorphism for all closed subsets \(A \) of \(X \).

If \(f^* : E^n(x) \to E^n(f^{-1}(x)) \) is an isomorphism for all \(x \in X \), then \(f^* : E^n(X) \to E^n(X') \) is an isomorphism and \(f^* : E^{n+1}(X) \to E^{n+1}(X') \) is a monomorphism.

Remark. Obviously, conditions (a) and (b) are derived from Kozlowski’s Theorem.

The proofs of Theorems A and B will depend on Lemmas 1–4 below.

Given a map \(f : X' \to X \) and a subset \(A \) of \(X \), \(f^{-1}(A) \) is denoted by \(A' \) and the map \(A' \to A \) defined by \(f \) is denoted by \(f_A \).

Let \(C_f = M(f)/X' \) be the mapping cone of a map \(f : X' \to X \). \(q_f : M(f) \to C_f \) denotes the quotient map from the mapping cylinder \(M(f) \) of \(f \) to \(C_f \).

Given a map \(f : X' \to X \) and a space \(E \), \(f^* : [X, E] \to [X', E] \) is called monic provided that for any map \(g : X \to E \), \(gf \equiv \text{const} \) implies \(g \equiv \text{const} \).

Lemma 1. Suppose \(f : X' \to X \) is a map such that \(f^* : [X, \Omega E] \to [X', \Omega E] \) is onto. Then \(q_f^* : [C_f, E] \to [M(f), E] \) is monic.

Proof. Suppose \(g : C_f \to E \) is a map such that \(g|X \approx \text{const} \). We may assume \(g|X = \text{const} \) (by homotoping \(g \)). Then \(g \) factors as \(C_f \to \Sigma X' \to E \), which in turn factors (up to homotopy) as \(C_f \to \Sigma X' \to \Sigma X \to E \). Notice that \(C_f \to \Sigma X \) is null-homotopic, as it factors as \(C_f \to C(X) \to \Sigma X \), \(C(X) \) being the cone over \(X \). Thus \(g \approx \text{const} \).

Lemma 2. Suppose \(f : X' \to X \) is a map such that \(q_f^* : [C_f, E] \to [M(f), E] \) is monic. If \(g, h : M(f) \to E \) are two null-homotopic maps such that \(g|X' = h|X' \), then \(g \approx h \) rel. \(X' \).

Proof. We need to extend the map \(G : M(f) \times \{0, 1\} \cup X' \times I \to E \), where \(G|M(f) \times \{0\} = g \), \(G|M(f) \times \{1\} = h \), and \(G(x, t) = g(x) \) for \((x, t) \in X' \times I \) over \(M(f) \times I \). Since \(G|X \times \{0\} \approx \text{const} \), \(G \) extends to \(G' : (M(f) \times \{0, 1\} \cup X' \times I) \cup C(X \times \{0\}) \to E \), where \(C(X \times \{0\}) \) is the cone over \(X \times \{0\} \). Notice that \(M(f) \times \{0, 1\} \cup X' \times I \) \(\cup C(X \times \{0\}) \) is homotopy equivalent to \(C_f \) and \(G'|X \times \{1\} \) is null-homotopic. By the hypotheses, \(G' \approx \text{const} \), which implies \(G \approx \text{const} \). Since the pair \((M(f) \times I, M(f) \times \{0, 1\} \cup X' \times I) \) has the homotopy extension property with respect to any space, we obtain an extension of \(G \) over \(M(f) \times I \).

Recall that the double mapping cylinder \(DM(f) \) of a map \(f : X' \to X \) is the union of two copies of \(M(f) \) with two copies of \(X' \) identified. The natural projection \(DM(f) \to X \) is denoted by \(p \).

Lemma 3. For any map \(f : X' \to X \), the mapping cone \(C_p \) of the natural projection \(p : DM(f) \to X \) is homeomorphic to the reduced suspension \(S(C_f) \) of the mapping cone of \(f \).
Proof. Notice that $\text{DM}(f)$ is homeomorphic to $X' \times I \cup M(f) \times \{0, 1\} \subset M(f) \times I$, and $M(p)$ is homeomorphic to $M(f) \times I$. Also C_p is homeomorphic to $M(f) \times I / (X' \times I \cup M(f) \times \{0, 1\})$. Since $\Sigma(C_f) = (M(f)/X') \times I / (M(f)/X') \times \{0, 1\}$, Lemma 3 follows.

Lemma 4. Suppose E is a CW complex and $f: X' \to X$ is a closed surjective map of paracompact Hausdorff spaces. Denote by \mathcal{S} the family of all closed subsets B of X such that $q_f^*: [C_f, E] \to [M(f), E]$ and $f_A^*: [A, E] \to [f^{-1}(A), E]$ are monic for any closed subset A of B. If for any closed subset B of X and for any neighborhood U of B there is an open neighborhood V of B in U such that $\text{cl}(V) - V \in \mathcal{S}$, then the image of $f^*: [X, E] \to [X', E]$ is precisely the set of all homotopy classes $[g]$ such that $g|f^{-1}(x) \approx \text{const}$ for all $x \in X$.

Proof. It suffices to show that any map $g: X' \to E$ such that $g|f^{-1}(x) \approx \text{const}$ for all $x \in X$ extends over $M(f)$. Without loss of generality we may assume that E is an ANE for paracompact spaces (see [D-K]). Let $\pi: M(f) \to X$ be the projection. Fix $x \in X$. Since $g|f^{-1}(x) \approx \text{const}$, there exists an extension $g': X' \cup \pi^{-1}(x) \to E$ of g. Define $g'': X' \cup \pi^{-1}(x) \cup X \to E$ by $g''|X' \cup \pi^{-1}(x) = g'$ and $g''(X) = g(x)$; g'' extends over a neighborhood U of $X' \cup \pi^{-1}(x) \cup X$ in $M(f)$. Choose a neighborhood V_x of x in X such that $\pi^{-1}(V_x) \subset U$. Having done that for all x in X, we choose a locally finite cover $\{A_s : s \in S\}$ of X consisting of closed sets, which is a refinement of $\{V_x : x \in X\}$. Then, for each $s \in S$, we choose a map $g_s: X' \cup \pi^{-1}(A_s) \to E$ such that $g_s|X' = g$ and $g_s(A_s)$ is a one-point set.

If $g': X' \cup \pi^{-1}(A) \to E$ is an extension of g (A closed in X) and $s \in S$, then there is an extension g'' of g' over $X' \cup \pi^{-1}(U)$ for some closed neighborhood U of A. Choose an open neighborhood V of A in U such that $\text{cl}(V) - V \in \mathcal{S}$. By Lemma 2,

$$g''|\pi^{-1}((\text{cl}(V) - V) \cap A_s) \approx g_s|\pi^{-1}((\text{cl}(V) - V) \cap A_s)$$

rel. $f^{-1}((\text{cl}(V) - V) \cap A_s)$. Since $g_s|\pi^{-1}((\text{cl}(V) - V) \cap A_s)$ extends over $\pi^{-1}(A_s)$, g'' extends over $\pi^{-1}(A_s)$. Thus we have an extension $g'''': X' \cup \pi^{-1}(A \cup A_s) \to E$ of g. By well-ordering S and transfinite induction, we can construct an extension $G: M(f) \to E$ of g.

Proof of Theorems A and B. We are going to prove the following statement which implies both Theorems A and B:

(*) Suppose $\{E_k\}_{k \geq 1}$ is a CW spectrum and $f: X' \to X$ is a closed surjective map of paracompact Hausdorff spaces such that, for some integer n, $f^*: E^n(x) \to E^n(f^{-1}(x))$ is an isomorphism for all $x \in X$. Denote by \mathcal{S} the family of all closed subsets B of X such that $f^*: E^{n-1}(A) \to E^{n-1}(f^{-1}(A))$ is an epimorphism, and $f^*: E^n(A) \to E^n(f^{-1}(A))$ is a monomorphism for all closed subsets A of B. If for any closed subset B of X and for any
neighbourhood U of B there is an open neighborhood V of B in U such that $\text{cl}(V) - V \in \mathcal{S}$, then $f^*: E^n(X) \to E^n(X')$ is an isomorphism and $f^*: E^{n+1}(X) \to E^{n+1}(X')$ is a monomorphism.

Without loss of generality, assume $\{E_k\}_{k \geq 1}$ is an Ω-spectrum. Now, $E^n(Z) = [Z, E_n]$ for any space Z.

Notice that $f^*: E^n(X) \to E^n(X')$ is an isomorphism by Lemma 4. Indeed, $f_A^*: [A, E_n] \to [f^{-1}(A), E_n]$ is monic for each $A \in \mathcal{S}$, and Lemma 1 implies that $q^*: [C_f, E_n] \to [M(f_A), E_n]$ is monic for each $A \in \mathcal{S}$.

So it remains to show that $f^*: E^{n+1}(X) \to E^{n+1}(X')$ is a monomorphism. Suppose $g, h: X \to E^{n+1}$ are two maps such that $gf \approx hf$. Then there is a map $H: DM(f) \to E^{n+1}$ such that H restricted to one copy of X equals g and H restricted to the other copy of X equals h. It suffices to show that H restricts over $M(p)$, where $p: DM(f) \to X$ is the natural projection. This is easily seen if one notices that $(M(p), DM(f))$ is homeomorphic to $(M(f) \times I, X' \times I \cup M(f) \times \{0, 1\})$. Then $H|X \times \{0\} = g, H|X \times \{1\} = h$, and any extension of H over $M(f) \times I$ would produce a homotopy from g to h when restricted to $X \times I$.

Notice that $H|p^{-1}(x)$ is null-homotopic for all $x \in X$. Indeed, $p^{-1}(x)$ is the suspension $\Sigma f^{-1}(x)$ of $f^{-1}(x)$ and $[\Sigma f^{-1}(x), E_{n+1}] = [f^{-1}(x), \Omega E_{n+1}] = \{f^{-1}(x), E_n\} = \{(x), E_n\}$. To be able to apply Lemma 4, we need to check that for each $A \in \mathcal{S}$, both $q^*: [C_f, E_{n+1}] \to [M(p_A), E_{n+1}]$ and $p^*: [A, E_{n+1}] \to [p^{-1}(A), E_{n+1}]$ are monic. The latter is clear, since p is a retraction. By Lemma 3, $[C_f, E_{n+1}] = [S(f_A), E_{n+1}] = [f_A, E_{n+1}] = [C_f, E_{n+1}]$ (here C_f and C_f are considered as pointed spaces with obvious base points). The proof can be completed by showing that any map u from C_f to E_n is null-homotopic (this implies that all pointed maps from C_f to E_{n+1} are null-homotopic, and since all components of $E_{n+1} \cong \Omega E_{n+2}$ are of the same homotopy type, all unpointed maps from C_f to E_{n+1} are null-homotopic). Since $(u|A)f \approx \text{const}$, $u|A \approx \text{const}$ by the first part of the Theorem. Thus u factors (up to homotopy) as $C_f \to C_f/\sim \to E_n$. Since $f^*: E^{n+1}(A) \to E^{n+1}(f^{-1}(A))$ is an epimorphism, the map $\Sigma f^{-1}(A) \to E_n$ factors (up to homotopy) as $\Sigma f^{-1}(A) \to \Sigma(A) \to E_n$. Since $C_f \to \Sigma(A)$ factors through the cone over A, $u \approx \text{const}$.

Statement (*) obviously implies Theorem B. Theorem A can be proved by induction on $m = \text{Ind} X$. If $m = 0$, we use Statement (*) with \mathcal{S} being empty and $n = m_0$. If Theorem A holds for $m \leq k$ and $\text{Ind} X = k + 1$, we use Statement (*) with $\mathcal{S} = \{B \in \text{cl}(B) \subset X| \text{Ind} B \leq k\}$ and $n = k + 1 + m_0$.

The authors are grateful to A. N. Dranishnikov for pointing out an error in the first version of the paper. Also, he noticed that the projection $\pi: S^1 \to [-1, 1]$ ($\pi(x, y) = x$) is an example satisfying the hypotheses of Theorem A for $m = m_0 = 1$ (ordinary cohomology is used here) such that $\pi^*: H^{m+m_0-1}([-1, 1]) \to H^{m+m_0-1}(S^1)$ is not an isomorphism.
References

