On nonacyclicity of the quotient space of \mathbb{R}^3
by the solenoid

Umed H. Karimov a, Dušan Repovš $^b, *$

a Institute of Mathematics, Academy of Sciences of Tajikistan Ul. Ainy, 299A, Dushanbe 734063, Tajikistan
b Institute of Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana 1001, Slovenia

Received 29 May 2001; received in revised form 2 May 2002

Abstract

It is well-known that the quotient space of the 3-dimensional Euclidean space \mathbb{R}^3 by the dyadic solenoid is not simply connected. We prove that the singular homology of this quotient space is uncountable.

MSC: primary 54B15; secondary 55N10, 55Q52

Keywords: Fundamental group; Simple connectivity; Solenoid; Projective telescope; Hawaiian earrings

1. Introduction

Bing [1] was the first to observe that the quotient space \mathbb{R}^3/Σ of the 3-dimensional Euclidean space \mathbb{R}^3 by the dyadic solenoid Σ has a nontrivial fundamental group (a complete proof of this result was first published in [8,9]). However, not much is known about its properties. Therefore it is of interest to understand the nature of this group.

The quotient space \mathbb{R}^3/Σ is homotopy equivalent to the dyadic projective telescope \mathcal{P}_2T. Bogley and Sieradski have shown that the fundamental group $\pi_1(\mathcal{P}_2T)$ is non-Abelian [2,11]. The purpose of the present paper is to show that the abelianization of the fundamental group $\pi_1(\mathbb{R}^3/\Sigma_\mathcal{P})$ of the quotient space \mathbb{R}^3 by any solenoid $\Sigma_\mathcal{P}$ is an uncountable group.

* Corresponding author.

E-mail addresses: umed@ac.tajik.net (U.H. Karimov), dusan.repovs@uni-lj.si (D. Repovš).

0166-8641/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-8641(03)00054-3
Theorem 1.1. The quotient space \(\mathbb{R}^3 / \Sigma \) of \(\mathbb{R}^3 \) by any solenoid \(\Sigma \) is homotopy equivalent to the projective telescope \(\mathcal{P}T \) and the singular homology group \(H_1(\mathbb{R}^3 / \Sigma; \mathbb{Z}) \) is uncountable.

2. Preliminaries

Let \(S^1 \) be the oriented unit circle in the complex plane \(\mathbb{C} \). Consider the following inverse sequence \(\mathcal{P} \):

\[
P_0 \xleftarrow{f_0} P_1 \xleftarrow{f_1} P_2 \xleftarrow{f_1} \cdots
\]

where \(P_0 \) is a point, \(P_k \) is the circle \(S^1 \) and \(f_k : S^1 \to S^1 \) is the standard continuous mapping of degree \(n_k, n_k > 1, \) for every \(k > 0 \). The inverse limit \(\varprojlim \mathcal{P} \) is called the solenoid \(\Sigma \).

The space \(\Sigma \) is one-dimensional, compact and metric. It has a standard embedding into \(\mathbb{R}^3 \) (see, e.g., [5, pp. 230–231]). If \(n_k = 2 \) for all \(k \), then \(\Sigma \) is called the dyadic solenoid and denoted by \(\Sigma_2 \).

Let \(C(f_0, f_1, f_2, \ldots) \) be the infinite mapping cylinder (see, e.g., [6,7,10]) and let \(\widehat{\mathcal{P}} \) be its natural compactification by the solenoid \(\Sigma \). The projective telescope \(\mathcal{P}T \) is the one-point compactification of \(C(f_0, f_1, f_2, \ldots) \) by some point \{pt\}. We consider \{pt\} as the base point of \(\mathcal{P}T \) and the circles \(P_k \) for \(k = 1, 2, 3, \ldots \) as the natural subspaces of \(\mathcal{P}T \).

Hereafter, by homology we shall mean the singular homology with integer coefficients. Since the one-dimensional homology group of a path-connected space is the abelianization of the fundamental group, our results strengthen Bing’s theorem mentioned above [1,8,9].

To prove Theorem 1.1 we shall need the following results:

Theorem 2.1 (Borsuk [3,9]). Let \(W \) be a strong deformation retract of \(\widehat{W} \) and let \(X \) be any continuum in \(W \). Then \(W/X \) is a strong deformation retract of \(\widehat{W}/X \). Thus in particular, \(W/X \) and \(\widehat{W}/X \) have the same homotopy type.

Proposition 2.2. The compactum \(\mathcal{P}T \) is an absolute retract.

Proof. The proposition is a direct consequence of well-known results (see, e.g., [7, p. 104]). \(\square \)

Consider the following closed subset of \(S^1 \):

\[
A = \left\{ e^{2\pi i t} \in S^1 \mid t = \frac{1}{k}, \ k \in \mathbb{N} \right\}.
\]

The quotient space \(S^1/A \) is homeomorphic to the Hawaiian earring \(\mathcal{H} \), i.e., to the compact bouquet of a countable number of circles \(\{S^1_k\}_{k \in \mathbb{N}} \).

Let \(p : S^1 \to \mathcal{H} \) be the canonical projection, \(\mathbb{Z} \) the infinite cyclic group and \(\mathbb{Z}_n \) the finite cyclic subgroup of order \(n \) of \(S^1 \):

\[
\mathbb{Z}_n = \left\{ e^{2\pi i t} \in S^1 \mid t = \frac{k}{n}, \ k = 1, 2, \ldots, n \right\}.
\]
3. Proof of Theorem 1.1

Since the space \(\tilde{P} \) is a 2-dimensional compactum, it can be considered as a closed subspace of \(\mathbb{R}^3 \). Since \(\mathbb{R}^3 \) and (by Proposition 2.2) \(\tilde{P} \) is an absolute retract, \(\tilde{P} \) is a strong deformation retract of \(\mathbb{R}^3 \). The compactum \(\Sigma P \) is a subset of \(\tilde{P} \), therefore by Theorem 2.1 the quotient space \(\mathbb{R}^3 / \Sigma P \) is homotopy equivalent to the quotient space \(\tilde{P} / \Sigma P \), which is obviously homeomorphic to the projective telescope \(PT \).

Since the homotopy type of \(\mathbb{R}^3 / \Sigma P \) does not depend on the way in which \(\Sigma P \) is embedded into \(\mathbb{R}^3 \) (see Theorem 1 in [9]), we can assume that \(\Sigma P \) is embedded into \(\mathbb{R}^3 \) as the composition of the standard embeddings \(\Sigma P \subset \mathbb{R}^3 \times \{0\} \subset \mathbb{R}^3 \times \mathbb{R}^2 \), where 0 is the origin of \(\mathbb{R}^2 \). By Theorem 2.1, \(\mathbb{R}^3 / \Sigma P \) is homotopy equivalent to \(\mathbb{R}^3 / \Sigma P \) and therefore to the projective telescope \(PT \). The first part of Theorem 1.1 is thus proved.

Suppose now that to the contrary, \(H_1(PT) \) were a countable group. Consider \(PT \) as the union: \(PT = C(f_0) \cup C(f_1, f_2, f_3, \ldots)^* \), where \(C(f_0) \) is the cylinder of the constant mapping \(f_0 : S^1 \rightarrow S^1 \) and therefore is a contractible space, and \(C(f_1, f_2, f_3, \ldots)^* \) is the one-point compactification of the infinite mapping cylinder \(C(f_1, f_2, f_3, \ldots) \). The intersection of these two subspaces of \(PT \) is the circle \(S^1 \). Thus it follows by the Mayer–Vietoris exact sequence:

\[
\rightarrow H_1(S^1) \rightarrow H_1(C(f_0)) \oplus H_1(C(f_1, f_2, f_3, \ldots)^*) \rightarrow H_1(PT) \rightarrow \cdots
\]

that the group

\[
H_1(C(f_1, f_2, f_3, \ldots)^*)
\]

is countable. (3.1)

Consider now \(C(f_{n+1}, f_{n+2}, f_{n+3}, \ldots)^* \) as a subspace of \(C(f_1, f_2, f_3, \ldots)^* \). Let \(X_n \) and \(p_n : C(f_1, f_2, f_3, \ldots)^* \rightarrow X_n \) be the corresponding quotient space and the quotient mapping. For every sequence of units and zeros \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \ldots) \), let \(g_\alpha : \mathcal{H} \rightarrow \mathcal{H} \) be the mapping such that

\[
g_\alpha|_{S^1} = \begin{cases}
\text{the identity mapping onto its image}, & \text{if } \alpha_k = 1, \\
\text{the constant mapping into the base point}, & \text{if } \alpha_k = 0.
\end{cases}
\]

Let \(g \) be a mapping of \(\mathcal{H} \) to \(C(f_1, f_2, f_3, \ldots)^* \) which maps the base point of \(\mathcal{H} \) to the base point \(\{pt\} \) of \(C(f_1, f_2, f_3, \ldots)^* \) and such that the restriction \(g|_{S^1} \) only wraps once around the circle \(P_k \) in the positive direction.

The set \(\{g_\alpha\} \) is uncountable. However, the group \(H_1(C(f_1, f_2, f_3, \ldots)^*) \) is countable (3.1). Therefore there exist two sequences \(\alpha \) and \(\beta \) such that \(\alpha \neq \beta \) and such that for the mappings \(S^1 \xrightarrow{\beta} \mathcal{H} \xrightarrow{g_\alpha} \mathcal{H} \xrightarrow{g_\beta} C(f_1, f_2, f_3, \ldots)^* \) and \(S^1 \xrightarrow{\beta} \mathcal{H} \xrightarrow{g_\beta} C(f_1, f_2, f_3, \ldots)^* \) we obtain the same homomorphism of the corresponding homology groups:

\[
(g_\alpha \cdot g_\beta p)|_1 = (g_\alpha \cdot g_\beta p)|_1 : H_1(S^1) \rightarrow H_1(C(f_1, f_2, f_3, \ldots)^*).
\]

(3.2)

On the other hand, let \(m \) be the minimal number such that \(\alpha_m \neq \beta_m \). To the projection \(p_m : C(f_1, f_2, f_3, \ldots)^* \rightarrow X_m \) there correspond two homomorphisms of homology groups:

\[
H_1(S^1) \xrightarrow{p_m \beta} H_1(X_m) \text{ and } H_1(S^1) \xrightarrow{p_m \alpha \cdot g_\beta p} H_1(X_m).
\]

Since \(\alpha_k = \beta_k \) for \(k < m \) and \(\alpha_m \neq \beta_m \), by construction we have \((p_m \cdot g_\alpha \cdot g_\beta p)|_1(1) \neq (p_m \cdot g_\beta p)|_1(1) \), contradicting (3.2).
Question 3.1. Let X be the Case–Chamberlin continuum [4]. Is then the homology of quotient space $H_1(\mathbb{R}^3/X)$ nontrivial?

Acknowledgements

We acknowledge the support by the Ministry for Education, Science and Sport of the Republic of Slovenia research program No. 0101-509 and research grants No. SLO-KIT-04-14-2002 and No. SLO-US-2002-01. The first author thanks Professor B.U. Makhmadaliev for the support during the work on this paper. We thank the referee for comments and suggestions.

References