Homotopy properties of decomposition spaces

by

Neelima Shrikhande (Mt. Pleasant, Mich.)

Abstract. Let \(X \) be a continuum (compact, connected set) in \(E^n \). Then the homotopy type of the decomposition space \(E^n/X \) depends only on the shape of \(X \). We also show a necessary and sufficient condition for \(E^n/X \) to be locally simply connected. This is the "nearly-1-movable" property of continua described by D. R. McMillan. Thus the local simple connectedness of decomposition space also depends only on the shape of \(X \).

Introduction. Let \(X \) be a continuum (compact, connected set) in Euclidean \(n \)-space \(E^n \). We investigate the homotopy properties of decomposition space \(E^n/X \) obtained by identifying \(X \) to a point and giving the resulting space the quotient topology.

We first show that the homotopy type of \(E^n/X \) depends only on the shape of \(X \). This generalizes previous results of D. Henderson [7], S. Mardešić [9], and R. Geoghegan and R. Summerhill [6]. There are continua \(X \) and \(Y \) which have the same shape, but their decomposition spaces are not homeomorphic (for example, two arcs in \(E^2 \), one cellular and one noncellular). On the other hand, there are homeomorphic decomposition spaces of two continua \(X, Y \) where \(X, Y \) do not have the same shape.

D. R. McMillan [11] defined the concept of "nearly-1-movable". We show that the property of a continuum being nearly-1-movable is necessary and sufficient for \(E^n/X \) being locally simply connected. Thus by [12], this property is also equivalent to \(E^n/X \) being simply connected. As a corollary we get the results that \(E^2 \) modulo a solenoid or \(E^3 \) modulo the "Case-Chamberlin continuum" [4] are not simply connected. The first result was announced by R. H. Bing in [1]. The second result was shown by S. Armentrout. Both proofs are unpublished.

Throughout the paper we use the geometric approach to Shape theory as defined by Borsuk [2].

§ 1. We show that if two continua \(X \) and \(Y \) in \(E^n \) have the same shape then their decomposition spaces have the same homotopy type.

* The contents of this paper form part of the Author's Ph. D. thesis written at Madison, Wisconsin under the direction of Professor D. R. McMillan, Jr.
Let \(Q = \prod_{1}^{\infty} [-1, 1] \) denote the Hilbert cube. We identify \(E^n = \prod_{1}^{n} (-1, 1) \) in the first \(n \) factors of \(Q \), and the unit ball \(B^n = \prod_{1}^{n} [-\frac{1}{2}, \frac{1}{2}] \subset E^n \subset Q \).

If \(X \) is a continuum in \(B^n \), \(B^n \setminus X \) can be considered as a subset of \(E^n \setminus \mathbb{Q} \). We state a theorem of K. Borsuk [3] in this notation.

Theorem (K. Borsuk). Let \(W \) be a strong deformation retract of \(\mathbb{R} \). Let \(X \) be a continuum in \(W \). Then \(W \setminus X \) is a strong deformation retract of \(\mathbb{R} \setminus X \).

Thus in particular, \(\mathbb{R} \setminus X \) and \(\mathbb{R} \setminus \mathbb{Q} \) have the same homotopy type.

Corollary. Since \(B^n \) is a strong deformation retract of both \(Q \) and \(E^n \), therefore \(Q \setminus X \) and \(E^n \setminus X \) have the same homotopy type.

Theorem 1. Let \(X, Y \subset E^n \) be continua such that \(\text{Sh}(X) \subset \text{Sh}(Y) \). Then \(E^n \setminus X \) has the same homotopy type as \(E^n \setminus Y \).

Proof. Since we are considering \(E^n \) as embedded in the first \(n \) factors of \(Q \), \(X \) and \(Y \) are \(n \)-sets in \(Q \). Thus by Chapman [5],

\[Q \setminus X \text{ is homeomorphic to } Q \setminus Y. \]

Let \(h: \mathbb{Q} \setminus X \to \mathbb{Q} \setminus Y \) be a homeomorphism.

Define \(\tilde{h}: Q \setminus X \to Q \setminus Y \) to be \(\tilde{h}(x) = h(x), x \notin X, \tilde{h}(x) = Y \). Then \(\tilde{h} \) is continuous since \(h \) is a proper map. Since \(h \) is a 1 to 1, continuous function between compact spaces, it is a homeomorphism. Thus \(Q \setminus X \cong Q \setminus Y \).

By corollary above \(E^n \setminus X \) has the same homotopy type as \(E^n \setminus Y \).

Question. Let \(X, Y \) be continua in \(E^n \). Let \(\text{Sh}(X) \supseteq \text{Sh}(Y) \). Does \(E^n \setminus X \) homotopically dominate \(E^n \setminus Y \)?

Remark. We know by [12] that if \(X, Y \) are continua in \(E^n \) (or \(\mathbb{Q} \)), \(\text{Sh}(X) \supseteq \text{Sh}(Y) \) and \(E^n \setminus X \) is simply connected, then \(E^n \setminus Y \) is also simply connected.

\(\mathbb{S} \). A compact set \(X \subset Q \) is said to be nearly-1-movable if for some (and hence for every) embedding of \(X \) in \(Q \), and each open set \(U \subset Q \) containing \(X \), there is an open set \(V \) containing \(X \) such that \(V \) nearly-1-moves towards \(X \) in \(U \).

That is, given any loop

\[l: S^1 \to V, \]

and any open \(W \) containing \(X \), there is a map

\[g: B^2 = \bigcup_{i=1}^{n} D_i \to U \]

\((D_i \text{ closed 2-cell } \subset \text{Int} B^2, i = 1, 2, \ldots, n, D_i \cap D_j = \emptyset, i \neq j \) such that

\[g|_{\partial B^2} = l \quad \text{and} \quad g(\bigcup \partial D_i) \subset W. \]

In other words, every loop in \(V \) belongs to the normal closure in \(U \) of every neighborhood \(W \) of \(X \).

D.R. McMillan has shown [11] that 1-movability implies nearly-1-movability and that this implication is irreversible. The solenoids as also the ‘Case-Chamberlin continuum’ [4] are not nearly-1-movable.

We show first that nearly-1-movability is a shape property.

Lemma 21. Let \(X, Y \) be continua in \(Q \). If \(X \) is nearly-1-movable and \(\text{Sh}(X) \supseteq \text{Sh}(Y) \) then \(Y \) is nearly-1-movable.

Proof. There are fundamental sequences

\[f = \{ f_i, X, Y \} \quad \text{and} \quad g = \{ g_i, X, Y \} \]

such that \(f \circ g = \text{id} \).

Let \(U \) be any open set containing \(Y \). Then there is

(i) \(U' \) containing \(Y \) and integer \(N \geq 1 \) such that

\[f_i * g_i |_{U'} \subset f_{i+1} * g_{i+1} |_{U'} \subset \text{id} |_{U'} \]

for all \(k \geq N \).

(ii) There is a \(U' \) containing \(X \) and \(N' \geq 1 \) such that

\[f_{i+1} |_{U'} \subset f_{i+1} |_{U'} \subset \text{id} |_{U'} \]

for all \(k \geq N' \).

(iii) There is a \(V \) containing \(Y \) and \(N' \geq 1 \) such that

\[g_i |_{V} \subset g_i |_{V} \subset \text{id} |_{V} \]

for all \(k \geq N' \).

(iv) There is a \(V \) containing \(X \) and \(N' \geq 1 \) such that

\[g_i |_{V} \subset g_i |_{V} \subset \text{id} |_{V} \]

for all \(k \geq N' \).

Thus it is easy to see that \(V \) nearly-1-moves towards \(Y \) in \(U \).

Thus nearly-1-movability is a shape property. To prove the if part of our main theorem we use the notion of local-1-connection, as defined by G. Kozlowski in [8].

Definition. The projection \(p: E^n \to E^n \setminus X \) is said to be a local-1-connection if for each open set \(U \) in \(E^n \setminus X \) containing \(X = p(X) \), there is an open \(V \subset E^n \setminus X \) such that every loop in \(p^{-1}(V) \) projects to a loop that is homotopic to a constant in \(U \).

Theorem 2. Let \(X \subset E^n \) be a continuum. Then \(X \) is nearly-1-movable if and only if \(E^n \setminus X \) is locally simply connected.

Proof. First we show that if \(X \) is nearly-1-movable then \(p: E^n \to E^n \setminus X \) is a local-1-connection.

Let \(U \) be an open set containing \(p(X) = X \). \(p^{-1}(U) \) is an open set in \(E^n \) and contains \(X \). Since \(X \) is nearly-1-movable, there is a sequence of open sets \(\{ V_i \}_{i=0}^{\infty} \) with the following properties

(i) \(V_0 = p^{-1}(U), X \subset V_i \) for \(i = 0, 1, 2, \ldots \),

(ii) \(V_{i+1} \subset V_i \),

(iii) every loop in \(V_i \) nearly-1-moves towards \(X \) in \(V_{i-1} \).
We let \(V = p(V_i) \), an open set. Let \(l: S^1 \to V \) be a loop. There is \(D_i: B^i - \bigcup\limits_{j \neq i} B^j \to U \) where each \(B^j \) is a 2-cell, \(B^j \cap B^i = \emptyset, \quad i \neq j \), \(\bigcup B^j \subset \text{int}(B^i) \) and \(\text{diam}(B^j) < 1 \), such that \(D_i \big|_{\partial B^j} = l, \quad D_i(B^j) = V_j, \quad i = 1, 2, \ldots, n. \)

Now \(D_i \big|_{\partial B^j} \) is a loop in \(V_j \) so there is \(D_i: B^j - \bigcup\limits_{j \neq i} B^j \to V_i \) such that diam \(B^j \leq \frac{1}{2} \) and \(D_i \big|_{\partial B^j} = D_i \big|_{\partial B^j} \), and \(D_i \big|_{\partial B^j} \) is a loop in \(V_j \).

We continue in this manner. Since the union of the \(i \)-th stage is contained in some 2-cell \(B_i^{-1} \) at the \((i-1)\)-st stage, it is possible to get a map \(D \) of \(B_i^{-1} \) minus a zero dimensional set \(S \). (This is possible since the diameter of each \(B^j \) is less than \(1/2 \)).

We define a map from \(B^1 \) to \(U \) as follows:

\[
D^1(y) = \begin{cases}
 p \circ D(y), & \text{if } y \in B^i - S, \\
 p(X), & \text{if } y \in S.
\end{cases}
\]

Since the image under \(D^1 \) of the union of \(\partial B^j \) at each stage is contained in \(V_{i+1} \), and the image of the zero dimensional set under \(D \) is contained in \(p(X) \), therefore \(D^1 \) is continuous. Thus \(D^1: B^i \to U \) extends \(p \circ l: S^1 \to p(V_i) = V \). Hence every loop in \(V_i \) projects to a loop which homotopes to a constant in \(U \). Thus \(p \) is a local-1-connection. To show that this implies that \(E^i/X \) is locally simply connected, we can apply lemma 1 of G. Kozlowski [8].

Conversely, assume \(E^i/X \) is locally simply connected. Let \(X \subset E^i, X \subset (0) \subset E^{i+1} \).

We consider \(X \) as a subset of \(E^i \times (0) \) embedded in \(E^{i+1} \) as shown above. We work in \(E^{i+1}/X \) to find sufficient space to shrink loops.

Consider this diagram:

\[
E^i \times E^1 \xrightarrow{p_{i+1}} E^{i+1}/X
\]

Define \(F: E^{i+1}/X \to E^i \times E^1 \) to be \(F(y_i) = (y_i, l). \) Then \(F \circ p_{i+1} = p_i \).

It is easy to show that \(F \) is well defined and continuous. Let \(U \) be an open set in \(E^{i+1}/X \) containing \(X = p_{i+1}(X) \).

\(F^{-1}(U) \) is an open set in \(E^{i+1} \) and contains \(X \). Let \(U^1 = F_{-1}(U) \cap E^1 \) which is open in \(E^1 \) and \(X \subset U^1 \).

Since \(E^i/X \) is locally simply connected, there is an open set \(V^1 \in E^i \times (0) \) with \(X \subset V^1 \subset U^1 \) such that every loop in \(F(V^1) \) shrinks in \(F(U^1) \).

There is an \(\varepsilon > 0 \) such that \(V^1 \times (-\varepsilon, \varepsilon) \subset F_{-1}(U) \). Let \(V = F_{-1}(V^1 \times (-\varepsilon, \varepsilon)) \); which is contained in \(U \). We want to show that each loop in \(V \) shrinks in \(U \). It is sufficient to show that \(p_{i+1} \) is a local 1-connection.

Let \(l: S^1 \to V^1 \times (-\varepsilon, \varepsilon) \). Then \(l \) is freely homotopic in \(V^1 \times (-\varepsilon, \varepsilon) \) to a loop \(l^1 \) in \(V^1 \times (0) \).

Now \(p_i(l(S^1)) = p_i(V^1 \times (0)) \subset E^i/X \times (0) \).

Hence \(p_i: S^1 \to p_i(V^1 \times (0)) \) extends to \(g: B^2 \to F(U^1) \), so \(F^{-1} \circ g \big|_{S^1} = p_{i+1} \big|_{S^1} \).

Thus \(p_{i+1} \circ l(S^1) \) shrinks in \(F(U) \subset E^{i+1}/X \). Therefore \(E^{i+1}/X \) is locally simply connected.

Now we show that \(X \) is nearly-1-movable as a subset of \(E^{i+1} \). Let \(U \) be open in \(E^{i+1} \) containing \(X \). Choose \(V^1 \subset p(U) \) by local simple connectedness. Let \(V = p^{-1}(V^1) \). Let \(l: S^1 \to V \) be a loop and let \(W, X \subset W \subset V, W \) open, be given.

We have to show that \(l \) belongs to the normal closure in \(U \) of \(W \).

We can assume that \(p \circ l(S^1) \) misses \(X \). For \(l \) is homotopic in \(V \) to a loop that misses \(X \). \(p \circ l: S^1 \rightarrow p(V) = V^1 \) extends to a map \(g: B^2 \to F(U) \).

Consider \(g^{-1}(P(X)) \) which is a compact set in the interior of \(B^1 \).

Then \(g^{-1}(P(X)) \subset g^{-1}(P(W)) \subset B^1 \).

We can find a finite number of disjoint simple closed curves \(R_1, R_2, \ldots, R_n \) with the following properties.

Let \(B_i \) denote the component of \(B^2 - R_i \) that misses \(B^1 \). Then the \(B_i \)'s are disjoint and \(\bigcup B_i \) contains \(g^{-1}(P(X)) \) and such that the images of these simple closed curves \(R_i \) lie in \(W \). (Such a collection of simple closed curves can be obtained by taking a brick decomposition of \(B^2 \) that has mesh smaller than \(\frac{1}{n} \text{dist}(g^{-1}(P(X)), B^2 - g^{-1}(P(W))) \))

and taking the relevant part of the boundary of the star of \(g^{-1}(P(X)) \).

Now \(g(B^2 - \bigcup\limits_{i=1}^{n} B_i) \) can be lifted to \(U \). Thus there is a map \(p^{-1} \circ g = \bar{g}: B^2 - \bigcup\limits_{i=1}^{n} B_i \to U \) such that \(\bar{g}(\partial B_i) \subset W, \quad \bar{g}_{|S^1} = l. \)

So \(l \) belongs to the normal closure in \(U \) of \(W \). Therefore \(X \) is nearly-1-movable.

§ 3. Movability properties are related to the UV properties [10] as follows. Property 1-UV for a compactum \(X \) clearly implies 1-movability.

Conversely,
THEOREM 3.1. Let X be a continuum in E^n having the property that for any neighborhood U of X the only loop that belongs to the normal closure in U of each neighborhood W of X is the trivial loop. Then X is nearly-1-movable if and only if X is 1-UV.

Proof. Let X be nearly-1-movable. Let U be an open set containing X. Choose V so that each loop in V belongs to the normal closure in U of each open W. $X \subseteq W \subseteq V$. But only such loops are trivial loops. Thus X is 1-UV.

COROLLARY. If X is as above, then X has property 1-UV if and only if E^*X is locally simply connected.

Proof. Clear.

As a corollary, we get the following theorem of D. R. McMillan [10].

THEOREM. If X is compact connected strongly 1-acyclic, then X is 1-UV if and only if E^*X is locally simply connected.

Proof. Strongly acyclic continua satisfy the property in Theorem 3.1.

References

Central Michigan University
Mt. Pleasant, Michigan

Accepté par la Rédaction le 16. 6. 1980

Yosida-Fukamiya’s theorem for f-rings

by Joaquin Pardo (Barcelona)

Abstract. We introduce the concept of super-infinitely small element and prove that in a commutative f-ring with unity the J-radical coincides with the set of all super-infinite small elements.

Preliminaries. We follow the notation and terminology of [1] and [5]. A lattice-ordered ring is an f-ring if $ax ≤ x ≤ ya$ whenever $x ≤ y$ and $a ≥ 0$. If we put $x^n = x^n ≤ 0$ and $x^n = (−x)^n ≤ 0$ and $|x| = x^n + x^−n$, then a lattice-ordered ring is a d-ring if $|xy| = |x| · |y|$, for all x, y. The term ideal must be understood in the ring-theoretic sense. A directed ideal is a l-ideal if $|y| ≤ |y|$, $y ≤ J ≤ x ≤ J$. We denote by J the l-ideal generated by $a ∈ A$. Following [1], an element $a ∈ A$ such that $|a| = A$ is called a formal unity. An l-ideal I is a band if, whenever a subset of J has a supremum in A, that supremum belongs to I. The J-radical $J(A)$ of an f-ring A is defined as the intersection of all maximal (two-sided) I-ideals, if there is any. Otherwise, $J(A) = A$ by definition. The ring A is J-semisimple if $J(A) = 0$. An element $x ∈ A$ is infinitely small with respect to the element $y ∈ A$ whenever $n |x| ≤ |y|$ holds for $n = 1, 2, ...$. If we put $I_n(A) = \bigcup I_n(y)$, where $I_n(y) = \{x ∈ A \mid x$ is infinitely small with respect to $y\}$, then A is Archimedean if and only if $I_n(A) = 0$. A lattice-ordered ring is Dedekind complete if every non-empty subset which is bounded above has a supremum.

Introduction. In vector lattices with a strong unit the Yosida–Fukamiya's theorem [7] asserts that the radical — intersection of all maximal l-vector subspaces — is the set of all infinitely small elements. Here, for a commutative f-ring with unity, we obtain a result that is parallel to that of Yosida–Fukamiya. But in this context infinitely small elements are no more appropriate and it has been necessary to introduce a notion of "smallness" related to the product of the ring: that of super-infinitely small element. And the set of all super-infinantly small elements of A is proved to be $J(A)$.

Super-infinitely small elements and pseudoarchimedean rings.

Definition. The element x of the lattice-ordered ring A is called super-infinitely small element with respect to $y ∈ A$ whenever $|x| ≤ |x| ≤ |y|$ and $|x| ≤ |y|$ hold for every $a ∈ A$.
