Noncompact Codimension 1 Real Algebraic Manifolds

J. S. Calcut and H. C. King

Abstract. A classical theorem of Seifert asserts that every smooth, closed, codimension 1 submanifold of Euclidean n–space can be smoothly isotoped to a nonsingular, real algebraic set ([S], Satz 4). We consider the noncompact analogue of Seifert’s theorem.

The main result (Theorem 1) is a necessary and sufficient topological condition for X^n a smooth, compact manifold with boundary to have a codimension 1, real algebraic interior. In particular, for such an X^n, there is a smooth, proper embedding $X^n \hookrightarrow D^{n+1}$ if and only if the interior of X^n is diffeomorphic to a nonsingular, real algebraic subset of \mathbb{R}^{n+1}. Moreover, if such an embedding exists, then $\text{int}(X^n)$ is isotopic to a nonsingular, real algebraic subset of $\text{int}(D^{n+1}) \approx \mathbb{R}^{n+1}$.

Using Theorem 1 we show (Corollary 1) that the noncompact analogue of Seifert’s theorem is intimately related to completions of a pair. This observation yields a complete answer to the noncompact Seifert problem in ambient dimension less than four and also in the high dimensional simply connected case (Corollary 2). As a final application of Theorem 1, we show that a real algebraic problem of V.I. Arnol’d concerning exotic \mathbb{R}^4’s being real algebraic in \mathbb{R}^5 is in fact equivalent to an open topological problem.

1. Introduction and the main theorem

A guiding problem here is the noncompact analogue of Seifert’s classical theorem [S], Satz 4.

Problem 1. Which smooth, proper, codimension 1 submanifolds M^n (not necessarily compact) of \mathbb{R}^{n+1} are isotopic to nonsingular real algebraic sets?

The method of proof employed by Seifert in the compact case does not readily extend to the noncompact case. The main difference is the amount of control needed near infinity. In the compact case, one approximates a suitable smooth function by a polynomial over a large compact set and then, following Seifert, one adds an algebraic correction term to keep the polynomial from picking up more zeros outside of the compact set. The only control needed near infinity being that the polynomial should always be greater than (or always less than) zero. Clearly much more control is needed in the proper, noncompact case as the set of zeros extends all the way to infinity. The noncompact case does eventually involve approximating suitable smooth functions, however the approximations are much more delicate. The bulk of the work presented here is devoted to proving the following, which is our main theorem.
Theorem 1. Let X^n be a smooth, compact manifold. Then $\text{int}(X^n)$ is diffeomorphic to a nonsingular, real algebraic subset of \mathbb{R}^{n+1} if and only if X^n admits $X^n \hookrightarrow D^{n+1}$ a smooth, proper embedding. If such an embedding exists, then $\text{int}(X^n)$ is isotopic to a nonsingular, real algebraic subset W of $\text{int}(D^{n+1}) \approx \mathbb{R}^{n+1}$. In fact, for all balls B^{n+1}_R of sufficiently large radius R, the pair $(B^{n+1}_R, B^{n+1}_R \cap W)$ is diffeomorphic to (D^{n+1}, X^n).

Remark 1. A map is proper provided it maps boundary points to boundary points, is transverse at boundaries, and the inverse image of every compact set is compact. All isotopies will be smooth, proper and ambient.

The remainder of this paper is organized as follows. Section 2 presents some applications of Theorem 1 to the study of Problem 1. Section 3 is a brief discussion of algebraic regular neighborhoods. Section 4 constructs the ends of the algebraic set W in Theorem 1 and Section 5 completes the proof of Theorem 1.

2. Applications of the main theorem

First, we recall the notion of a completion which we will need only for manifolds without boundary. Let (A, B) be a smooth manifold pair with B a proper submanifold (B may be empty). Assume further that ∂B and ∂A are empty. A completion of the pair (A, B) is a smooth, compact manifold pair $(\overline{A}, \overline{B})$ and a smooth embedding $i : (A, B) \hookrightarrow (\overline{A}, \overline{B})$ satisfying the following conditions: $i(A, B) = (\text{int}(\overline{A}), \text{int}(\overline{B}))$, \overline{B} intersects $\partial \overline{A}$ in $\partial \overline{B}$ and this intersection is transverse.

Our first corollary of Theorem 1 is a topological condition characterizing those manifolds that answer Problem 1 in the affirmative.

Corollary 1. Let $M^n \subset \mathbb{R}^{n+1}$ be any smooth, proper submanifold. Then, M^n is isotopic to a nonsingular, real algebraic subset of \mathbb{R}^{n+1} if and only if the pair (\mathbb{R}^{n+1}, M^n) admits a completion $(\mathbb{R}^{n+1}, \overline{M^n})$ such that \mathbb{R}^{n+1} is diffeomorphic to D^{n+1}.

Proof. First, assume M is isotopic to $p^{-1}(0)$, a nonsingular, real algebraic subset of \mathbb{R}^{n+1}. The idea is that ∞ is an isolated singularity (or perhaps a nonsingular point) of $p^{-1}(0)$ controlling the topology near ∞. Specifically, let $\theta : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be inversion through the unit sphere, namely $\theta(x) = x/|x|^2$. Let $d = \deg p$ and define $q : \mathbb{R}^{n+1} \to \mathbb{R}$ to be the polynomial given by $|x|^{2d} \circ \theta$ with denominators cleared (compare [AK3], Lemma 2.1.5). Notice that q vanishes on $\theta(M) \backslash 0$ and that 0 is either a nonsingular point or an isolated singularity of $q^{-1}(0)$. In either case, [M3], pp.16-18, implies $(cD^{n+1}, cD^{n+1} \cap q^{-1}(0))$ is homeomorphic (in fact diffeomorphic except possibly at 0) to the cone $(c(\mathbb{S}^n), c(\mathbb{S}^n \cap q^{-1}(0)))$ for sufficiently small $c > 0$, where $c\mathbb{S}^n \cap q^{-1}(0)$ is a smooth, closed manifold. The result follows by reinverting through the unit sphere and reparameterizing collars at infinity.

Next, assume (\mathbb{R}^{n+1}, M) admits a completion $(\mathbb{R}^{n+1}, \overline{M})$ such that \mathbb{R}^{n+1} is diffeomorphic to D^{n}. Recall that by definition, \overline{M} intersects $\partial \mathbb{R}^{n+1}$ in $\partial \overline{M}$ and this intersection is transverse [Si], p.109 (transverse data implies transverse results). The result follows immediately from Theorem 1 above. □
Remark 2. At least for \(n \neq 3, 4 \), the hypothesis that \(\mathbb{R}^{n+1} \) be diffeomorphic to \(D^{n+1} \) is superfluous. For \(n = 2 \), use the smooth form of the Alexander-Schoenflies theorem (i.e. any smooth \(S^2 \hookrightarrow \mathbb{R}^3 \) bounds a smooth 3-disk) and for \(n \geq 5 \), use the h-cobordism theorem.

Remark 3. In the compact case, the isotopy in Seifert’s theorem can be chosen \(\varepsilon \)-small. This is not possible in the noncompact case as the following example shows. We can, however, choose our isotopy to be \(\varepsilon \)-small over any prescribed compact subset of \(\mathbb{R}^{n+1} \) as the proof of Theorem 1 shows.

Example 1. Let \(M^n \subset \mathbb{R}^{n+1} \) be any noncompact, smooth, proper, real algebraic submanifold. We will give an isotopy of \(M^n \) to a submanifold which cannot be isotoped to a real algebraic set by any bounded isotopy. By the assumptions on \(M^n \), there is a smooth, proper ray \([0,\infty)\) in \(M^n \); let \(p_k, k \in \mathbb{Z}^+ \), be the integer points of this ray. At each \(p_k \) send a hair (literally a closed interval) out of \(M^n \) so that the end of the hair is at least \(k \) units further from the origin of \(\mathbb{R}^{n+1} \) than the point \(p_k \) and the hairs are disjoint. This can be arranged, say, by sending the hairs out following the ray. For each \(p_k \) choose a very small closed \(n-1 \) disk neighborhood \(D_k \) of \(p_k \) in \(M^n \). Using the hairs as guides, isotop the \(D_k \)’s, while fixing the boundaries \(\partial D_k \), so that the points \(p_k \) coincide with the far endpoints of the hairs; we denote the isotoped \(D_k \) by \(D'_k \), the isotoped \(p_k \) by \(p'_k \), and the isotoped \(M^n \) by \(M' \). Now, any isotopy of \(M' \) bounded by \(N > 0 \) leaves the boundary of \(D'_k \) closer to the origin than \(p'_k \) for \(k > 2N \). Hence, the squared norm function on \(\mathbb{R}^{n+1} \) will have infinitely many critical points on the image of \(M' \) under any bounded isotopy. Consequently, the image of \(M' \) could not be algebraic.

Next, we obtain basic necessary conditions for a manifold to answer Problem 1 in the affirmative. Assume \(M^n \subset \mathbb{R}^{n+1} \) is a smooth, proper submanifold that is isotopic to a nonsingular, real algebraic set. The implicit function theorem implies the boundary of \(M^n \) is empty (even real algebraic manifolds whose defining polynomials have singularities in their zero sets cannot have boundary points by a result of D. Sullivan ([Su], Corollary 2)). Corollary 1 implies that \(M^n \) is smoothly collared by \(N^{n-1} \) a smooth, closed manifold. In particular, \(N^{n-1} \) is the disjoint union of at most finitely many connected, smooth, closed manifolds and \(M^n \) has finitely many components and ends. We tacitly assume a smooth, proper embedding \(N^{n-1} \times [0,1] \hookrightarrow M^n \subset \mathbb{R}^{n+1} \) has been fixed that collars \(M^n \) and regard \(N^{n-1} \times [0,1] \) as a submanifold of \(M^n \).

These necessary conditions provide immediate counterexamples to Problem 1. The pair \((\mathbb{R} \times \mathbb{R}, \mathbb{Z} \times \mathbb{R})\) gives an example in every dimension of a very nice (smooth, proper, tame, etc.) submanifold that cannot be real algebraic. However, these counterexamples are not fatal and the necessary conditions given above are, in fact, nearly sufficient. Before we make this precise, we describe two additional hypothesis one may impose on \(M^n \). First, the ‘Ray hypothesis’ will mean that there is an isotopy of \(M^n \) simultaneously taking one smooth, proper ray in each end of \(M^n \) to a straight ray in the Euclidean sense. Second, the ‘End hypothesis’ will mean that each end of \(\mathbb{R}^{n+1} \setminus T(M^n) \) has finitely presented and stable fundamental group. Here \(T(M^n) \) denotes a closed tubular neighborhood of \(M^n \). We refer the reader to [CKS] for a discussion of ends in this context.

Corollary 2. Let \(M^n \subset \mathbb{R}^{n+1} \) satisfy the necessary conditions above. Then, \(M^n \) is isotopic to a nonsingular, real algebraic subset of \(\mathbb{R}^{n+1} \) provided \(n = 1, n = 2 \).
and either the Ray or End hypothesis is satisfied, or $n \geq 5$ and each component of the collaring manifold N is simply connected.

Proof. By [CKS] there is a completion of the pair (\mathbb{R}^{n+1}, M^n). The result follows by Corollary 1. \qed

Remark 4. Examples in [Si], p.110, show that a pair $(\mathbb{R}^{n+1}, M^n), n \geq 2$, need not have a completion if the components of N^{n-1} are not assumed to be simply connected. (In these examples, $N^{n-1} = S^1 \times S^{n-2}$.) Thus, the non-simply connected case carries deeper subtleties, as do ambient dimensions 3, 4.

We close this section with a very special case of Problem 1 that is related to that in [A].

Problem 2 (Arnold). Does there exist an exotic \mathbb{R}^4 diffeomorphic to a nonsingular, real algebraic subset of \mathbb{R}^5?

Remark 5. By ‘exotic’ we mean a smooth manifold that is homeomorphic but not diffeomorphic to the standard one. An n–dimensional pseudodisk is a smooth, compact contractible n–manifold with boundary.

In [MV] it was shown that any exotic \mathbb{R}^4, \mathcal{R}, answering Arnold’s problem in the affirmative is necessarily collared by a smooth homotopy 3–sphere that smoothly embeds in S^4 (this also follows from Corollary 1 and topological invertible cobordisms). Thus, if such an \mathcal{R} exists, then there is a pseudodisk with interior \mathcal{R} and one of the remaining Poincaré conjectures is false. In fact, the existence of such a pseudodisk is equivalent to Arnold’s problem. To show this, we will need a lemma that appears to be new.

Lemma 1. Let X^4 be a pseudodisk with simply connected boundary. Then, X^4 admits $X^4 \hookrightarrow D^5$ a smooth, proper embedding if and only if ∂X^4 smoothly embeds in S^4.

Proof. One direction is obvious, so assume there is $\partial X^4 \hookrightarrow S^4$ a smooth embedding. Let Y^5 be the smooth manifold with boundary obtained from $S^4 \times [0, 1]$ by gluing on $X^4 \times [-1, 1]$ along a product neighborhood, $N = \partial X^4 \times [-1, 1] \subset S^4 \times 0$, of ∂X^4 in the canonical way and smoothing corners. Then, ∂Y^5 consists of three connected components, say $S^4 \times 1$, Σ^4_A and Σ^4_B. Recalling that ∂X^4 is simply connected, standard theorems imply $\Sigma^4_{A,B}$ are simply connected \mathbb{Z}-homology 4-spheres, hence, topological 4-spheres by Freedman’s theorem [F]. Now, the 4th homotopy sphere cobordism group is trivial, i.e. $\Theta_4 = 0$, [KM]. Thus, there exists $W^5_{A,B}$ smooth null h-cobordisms of $\Sigma^4_{A,B}$ respectively (sew a standard 5-disk onto a smooth h-cobordism between $\Sigma^4_{A,B}$ and S^4). Let Z^5 be the smooth manifold with boundary obtained from Y^5 by sewing on $W^5_{A,B}$ along $\Sigma^4_{A,B}$ in the canonical way. Again, standard theorems imply Z^5 is simply connected and has the integral homology of a point. As $\partial Z^5 = S^4$, we may conclude that Z^5 is diffeomorphic to D^5 [M2], p.110. The result follows. \qed

Corollary 3. There exists an exotic \mathbb{R}^4 diffeomorphic to a nonsingular, real algebraic subset of \mathbb{R}^5 if and only if there exists an exotic \mathbb{R}^4 diffeomorphic to the interior of a compact manifold.
PROOF. First, suppose \(\mathcal{R} \) is an exotic \(\mathbb{R}^4 \) that is a nonsingular, real algebraic subset of \(\mathbb{R}^5 \). By [MV], there is a homotopy 3-sphere \(\Sigma^3 \) and a neighborhood of infinity in \(\mathcal{R} \) that is diffeomorphic to \(\Sigma^3 \times (0, 1) \). Let \(X^4 \) be the compact manifold obtained from \(\mathcal{R} \) by removing \(\Sigma^3 \times (0, 1) \), so int \((X^4) \) is diffeomorphic to \(\mathcal{R} \). The result follows.

For the other direction, suppose \(X^4 \) is a smooth, compact manifold with boundary and int \((X^4) \) is diffeomorphic to \(\mathcal{R} \), an exotic \(\mathbb{R}^4 \). Reparameterizing collars, we see that \(X^4 \) is homotopy equivalent to \(\mathcal{R} \), and so \(X^4 \) is contractible. Also, \(\partial X^4 \) is a homotopy 3-sphere [GS], pp. 366 and 519. Therefore, \(X^4 \) is a pseudodisk with simply connected boundary. There are two cases:

Case 1. \(\partial X^4 \) smoothly embeds in \(S^4 \). Then, Lemma 1 and Theorem 1 imply \(\mathcal{R} \) is diffeomorphic to a real algebraic subset of \(\mathbb{R}^5 \).

Case 2. \(\partial X^4 \) does not smoothly embed in \(S^4 \). The punctured double, \(2X^4 - pt \), is a smooth manifold homeomorphic to \(\mathbb{R}^4 \) since the double, \(2X^3 \), of \(X^4 \) is homeomorphic to \(S^4 \) by [F]. However, \(2X^4 - pt \) is not diffeomorphic to \(\mathbb{R}^4 \) since otherwise we have a smooth embedding of \(\partial X^4 \) in \(S^4 \). Thus, \(2X^4 - pt \) is an exotic \(\mathbb{R}^4 \) collared at infinity by \(S^3 \). Lemma 1 and Theorem 1 imply \(2X^4 - pt \) is diffeomorphic to a real algebraic subset of \(\mathbb{R}^5 \).

Thus, Arnol’d’s real algebraic problem is equivalent to a topological one. We remind the reader that all exotic \(\mathbb{R}^4 \)'s, \(\mathcal{R} \), are smooth proper submanifolds of \(\mathbb{R}^5 \) since \(\mathcal{R} \times \mathbb{R} \approx \mathbb{R}^5 \) either by engulfing or the smooth proper h-cobordism theorem. Moreover, these smooth embeddings may be chosen to be real analytic. Still, there are only countably many smooth compact manifolds (with or without boundary) and there are uncountably many pairwise nondiffeomorphic exotic \(\mathbb{R}^4 \)'s [GS], p.370, hence, most exotic \(\mathbb{R}^4 \)'s are not real algebraic in \(\mathbb{R}^5 \) or the interior of a smooth compact manifold. Exotic \(\mathbb{R}^4 \)'s are problematic at infinity: all known handle decompositions of exotic \(\mathbb{R}^4 \)'s are infinite [GS], p.366, all known exotic \(\mathbb{R}^4 \)'s contain a compact subset that cannot be contained in the bounded region formed by any smoothly embedded \(S^3 \) ("Property ★" [MV]), and every exotic \(\mathbb{R}^4 \) contains a compact subset that cannot be contained in any smoothly embedded \(D^4 \) (a "weak Property ★" [M1], p. 168, see also [GS], p. 366). It is unknown whether every exotic \(\mathbb{R}^4 \) possesses Property ★.

3. Algebraic Regular Neighborhoods

Definition 1. Suppose \(X \subset Y \) are real algebraic sets with \(X \) compact. An algebraic regular neighborhood of \(X \) in \(Y \) is obtained as follows. Pick any proper rational function \(p : Y \to \mathbb{R} \) with \(X = p^{-1}(0) \) then for small enough \(\epsilon > 0 \), the set \(p^{-1}([-\epsilon, \epsilon]) \) is an algebraic regular neighborhood of \(X \) in \(Y \).

Algebraic regular neighborhoods are explored in [D]. They are unique up to isotopy. They are mapping cylinder neighborhoods. In our context, \(X \) will always contain the singular points of \(Y \) so \(Y - X \) is a smooth manifold. Then \(\epsilon \) small enough just means that \(p \) has no critical values in \([-\epsilon, 0] \cup (0, \epsilon] \), which easily implies independence of \(\epsilon \) up to isotopy.

A related notion is an algebraic regular neighborhood of infinity for a real algebraic set \(Y \). This is \(p^{-1}((\infty, -R] \cup [R, \infty)) \) for a proper rational function \(p \) and large enough \(R \). Algebraic regular neighborhoods of infinity are unique and collar the ends of \(Y \), since they are algebraic regular neighborhoods of points added
when compactifying Y. An example of such a neighborhood is the intersection of Y with the complement of a sufficiently large open ball.

4. Constructing the ends of W

Definition 1. Let $x, (x,t), (x,t,s)$ denote typical elements of \mathbb{R}^n, $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$, and $\mathbb{R}^{n+2} = \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$ respectively. Let $B_r^n(x)$ denote the closed ball of radius r centered at x in \mathbb{R}^n and B_r^n denote $B_r^n(0)$. We let S^n_{n-1} denote the sphere of radius r about the origin in \mathbb{R}^n.

Essential to the proof of Theorem 1 is the following lemma, the proof of which will take up the rest of this section. One way of looking at it is that the pair (\mathbb{R}^{n+1}, Z) has its algebraic regular neighborhood of infinity diffeomorphic to $(S^n, \Sigma) \times [R, \infty)$.

Lemma 2. Let Σ^{n-1} be a closed smooth codimension one submanifold of S^n. If $n=1$ assume also that Σ^{n-1} is an even number of points. Then there is an algebraic subset $Z \subset \mathbb{R}^{n+1}$ such that for all sufficiently large R, the pair $(S^n_R, S^n_R \cap Z)$ is diffeomorphic to (S^n, Σ^{n-1}). In fact there is a proper embedding $h : S^n \times [R, \infty) \to \mathbb{R}^{n+1}$ so that $h^{-1}(Z) = \Sigma^{n-1} \times [R, \infty)$ and $|h(x,t)| = t$ for all (x,t).

Remark 6. The orientable, codimension 2 version of Lemma 2 already follows from results: for an orientable ‘knot’ $M^n \hookrightarrow S^{n+2}$, a generalized Seifert surface (i.e. a compact, connected, smooth manifold $M^{n+1} \hookrightarrow S^{n+2}$ with trivial normal bundle such that $\partial M^{n+1} = M^n$) always exists (see, for instance, the Introduction and Section 27 of [R]), coupling this with Theorem 0.2 of [AK1] and inversion through the sphere, the result follows. In codimension ≥ 3, the problem is open (the interested reader may refer to [AK2], for example).

The outline of the proof of Lemma 2 is as follows. First, by deleting a point from S^n we will think of Σ^{n-1} as being a submanifold of \mathbb{R}^n. The major effort is then to construct a real algebraic set $V \subset \mathbb{R}^n \times [0, \infty)$ so that for $t > 0$ small enough, $V \cap \mathbb{R}^n \times t$ is isotopic to $\Sigma^{n-1} \times t$. Now put V in projective space $\mathbb{R}P^{n+1}$ then delete the subspace $t = 0$ to obtain an affine algebraic set Z.

Now $Z \cap \mathbb{R}^n \times t$ is isotopic to $\Sigma^{n-1} \times t$ for all sufficiently large $t > 0$. By uniqueness of algebraic regular neighborhoods at infinity we then see that $(S^n_R, Z \cap S^n_R)$ is diffeomorphic to (S^n, Σ^{n-1}) for large enough radii R. Now for the details.

Let $Y^n \subset \mathbb{R}^n$ be the compact codimension zero submanifold so that $\partial Y^n = \Sigma^{n-1}$. Following Lemma 3.2 of [AK1] (and its proof), there is a finite collection of smoothly embedded disks D^m_α, $\alpha \in A$, in $\text{int}(Y^n)$ such that:

- The boundaries $\partial D^m_\alpha = \partial D^m_\alpha$, $\alpha \in A$, are in general position and
- Y^n minus some other finite disjoint collection of disks is a smooth regular neighborhood of $\cup_\alpha S^{n-1}_\alpha$ in Y^n.

Essentially, the disks D^m_α, $\alpha \in A$ are obtained from a smooth triangulation of Y^n by choosing one disk D^m_α to engulf each simplex not touching $\Sigma^{n-1} = \partial Y^n$.

We define a finite abstract graph \mathcal{G}. The vertices v_j, $j \in B \subset \mathbb{Z}^+$, of \mathcal{G} are the connected components of $Y^n - \cup_\alpha S^n_\alpha$. We order them so for $j \leq m$, v_j is a connected component of $Y^n - \cup_\alpha D^n_\alpha$, and for $j > m$, v_j is a connected component
of $\cup_\alpha D^n_\alpha - \cup_\alpha S^n_\alpha$. We put an edge between two vertices v_i and v_j if and only if the intersection of the closures of their corresponding components contains an $n - 1$ dimensional subset (that is, their corresponding components are nontrivially adjacent). The crucial property here is that we could actually realize the graph as a subset of Y^n, the vertices as points in their component and the edges as smooth curves between these points which are transverse to $\cup_\alpha S^n_\alpha$ and intersect it in a single point. We can take a subgraph $F \subset G$, the disjoint union of m trees F_i so that $v_i \in F_i$ for $i \leq m$, and so F contains all the vertices of G. Deleting a smooth regular neighborhood of F from Y gives us a manifold isotopic to Y as long as we chose $v_i \in \partial Y^n$ for $i \leq m$. See Figure 1.

Assertion 1. After a small isotopy, we can assume $\cup_\alpha S^n_\alpha - 1 = p^{-1}(0)$ where $p : R^n \to R$ is an overt polynomial.

Proof. By Theorem 2.8.2 of [AK3] we may suppose that each $S^n_\alpha - 1$ is a nonsingular real algebraic set, hence it is $p_\alpha^{-1}(0)$ for some polynomial $p_\alpha : R^n \to R$ so that $\nabla p_\alpha \neq 0$ on $S^n_\alpha - 1$. We may suppose $p_\alpha > 0$ outside some compactum. This polynomial p_α may not be overt, but if it is not we may replace it by $p_\alpha(x) + \epsilon |x|^{2k}$ for small $\epsilon > 0$ and $2k > degree of p_\alpha$ and it will be overt. Now just let p be the product of all the p_α.

Let E be the set of edges of F and let $|E|$ be the number of edges in E. If $deg p \leq |E|$ replace $p(x)$ with $(1 + |x|^2)^k p(x)$ for a large enough k so that $deg p > |E|$. For each edge $e \in E$, let e_x be the point of intersection of the edge with $\cup_\alpha S^n_\alpha$. Let $r : R^n \to R$ be the polynomial of degree $2 |E|$ given by:

$$r(x) = \prod_{e \in E} |x - e_x|^2.$$

Assertion 2. We may choose analytic coordinates in a neighborhood U_e of each e_x so that in these coordinates, $r(x) = |x|^2$ and $p(x) = \alpha_e(x_n)$ for some diffeomorphism $\alpha_e : (R, 0) \to (R, 0)$.

Proof. By induction there are a $k \leq n$ and analytic coordinates so $r(x) = \sum_{i=1}^{k-1} x_i^2 + h(x_k, \cdots, x_n)$, $r(0)=0$, and $p(x) = x_n$. Since the Hessian of r is positive definite, $\partial^2 h/\partial x_k^2 \neq 0$ so by the implicit function theorem there is a smooth function $\beta(x_k+1, \cdots, x_n)$ so that $\partial h/\partial x_k (\beta(x_k+1, \cdots, x_n), x_k+1, \cdots, x_n) = 0$. Replace the coordinate x_k by the new coordinate $u = x_k - \beta$. Then $\partial h/\partial u = \partial h/\partial x_k$ vanishes on $u = 0$, so $h = u^2 h_1(u, x_k+1, \cdots, x_n) + h_2(x_k+1, \cdots, x_n)$ by Taylor’s theorem. Now replace the coordinate u with the coordinate $v = u \sqrt{h_1}$ and the induction step is complete. Note that the coordinate x_n remains unchanged until the very last
induction step. In this step \(u = x_n \) and we let the germ of \(\alpha_e \) be the inverse of the map \(x_n \mapsto x_n \sqrt{h_1(x_n)} \).

\[\square \]

Assertion 3. Let \(g(x,t) = p^2(x) + bt^2 - 2c \) with positive constants \(b \) and \(c \) to be determined below. Let \(V = g^{-1}(0) \). Then:

- \(V \cap \mathbb{R}^n \times (0,1] \subset \text{Nonsing} V \).
- The pair \((\mathbb{R}^n \times (0,1], V \cap \mathbb{R}^n \times (0,1])\) is diffeomorphic to \((\mathbb{R}^n, \Sigma_{n-1}) \times (0,1] \).
- \(V \subset \mathbb{R}^n \times [0, \infty) \).

Proof. Before giving a careful, but boring and opaque proof, we’ll give a rough idea why this works. For each \(t \) let \(V_t = V \cap \mathbb{R}^n \times t \) and let \(N_t \) be the set of \(x \) so \(g(x,t) \leq 0 \), then \(N_t \) is compact and \(V_t = \partial N_t \). Now \(N_t \) satisfies the equation \(p^2(x) - \beta(x) \) where \(\beta(x) = 2ctr(x) - bt^2 \). The constants \(b \) and \(c \) will be small so \(\beta \) is small. If we are in a region where \(\beta > 0 \) then locally \(N_t \) is given roughly by \(-d \leq x(t) \leq d \) for some small \(d \), so \(N_t \) looks like the regular neighborhood \(p^{-1}([-d,d]) \) of \(p^{-1}(0) \). But \(\beta \leq 0 \) only where \(r \) is small. There we may use the local coordinates given in Assertion 2. In these coordinates, \(V_t \) is roughly a hyperboloid \(\Sigma_{i=1}^{n-1} x_i^2 - ax_n^2 = a' \). This has the effect of boring a hole through a regular neighborhood of \(p^{-1}(0) \), in other words deleting a regular neighborhood of an arc going from one edge of the regular neighborhood to the other. So in the end, \(N_t \) is obtained from a regular neighborhood of \(p^{-1}(0) \) by deleting a regular neighborhood of each edge in \(\mathcal{E} \). But a regular neighborhood of \(p^{-1}(0) \) is obtained from \(\mathbb{R}^n \) by deleting a disc around each vertex \(v_i \) with \(i > m \). Thus \(N_t \) is obtained from \(\mathbb{R}^n \) by deleting a regular neighborhood of \(\mathcal{F} \), and so \(N_t \) is isotopic to \(Y^m \). Consequently, \(V_t \) is isotopic to \(\Sigma_{n-1} = \partial Y^m \). See Figure 2.

Now for the details. Pick \(\epsilon > 0 \) so that \(\gamma^{-1}([0,2\epsilon]) \subset \bigcup_{e \in \mathcal{E}} U_e \), where \(U_e \) is as in Assertion 2. Since \(p \) is overt, we know it is proper. Let \(R \) be the maximum of \(|\nabla r|\) on the compact set \(p^{-1}([-1,1]) \). Note that \(|\nabla p(x)|/|p(x)| \to \infty \) as \(p(x) \to 0 \). This is because near a point of \(p^{-1}(0) \) there are local coordinates so \(p(x) = \prod_{i=k}^{n} x_i \) and in these coordinates we have \(|\nabla p(x)|/|p(x)| = \sqrt{\sum_{i=k}^{n} 1/x_i^2} \). Consequently we may choose \(\delta \in (0,1) \) so that \(|\nabla p(x)|/|p(x)| > R/\epsilon \) whenever \(|p(x)| \leq \delta \).

Now since \(p \) and \(r \) are overt and \(2 \deg p = \deg r \) we know \(p^2(x)/r(x) \to \infty \) as \(x \to \infty \). Consequently we may choose \(c \in (0,1) \) so that \(2c < p^2(x)/r(x) \) whenever \(|p(x)| \geq \delta \). We also require that \(c < \delta^2/\epsilon \) and \(\sqrt{2c} < \gamma_{e}(t) \) for all \(e \in \mathcal{E} \) if \(t^e \leq \epsilon \), where \(\gamma_e(t) = t_{e} e(t)/t \). Now let \(b = \alpha \).

The first step is to show \(V \cap \mathbb{R}^n \times (0,1] \subset \text{Nonsing} V \) and the coordinate \(t \) as a function on \(V \cap \mathbb{R}^n \times (0,1] \) has no critical points. Consequently there is an isotopy \(h_t : \mathbb{R}^n \to \mathbb{R}^n \), \(t \in (0,1] \) with compact support so that \(h_1 \) is the identity and \(h_t(V_t) = V_t \). (You can get \(h_t \) by integrating a vector field \((v,-1) \) on \(\mathbb{R}^n \times (0,1] \) which is tangent to \(V \).) It suffices to show that whenever \(g(x,t) = 0 \) and \(0 < t \leq 1 \) then

Figure 2. A regular neighborhood of \(p^{-1}(0) \) and \(N_t \).
\[\nabla_x g(x, t) \neq 0. \] Here \(\nabla_x \) denotes the gradient in the \(x \) variables. Note \(g(x, t) = 0 \) implies \(p^2(x)/r(x) < 2\epsilon t \) so \(p^2(x) < \delta^2 \) by our choice of \(c \). So suppose \(\nabla_x g(x, t) = 0 \). Then:

\[
0 = \nabla_x g(x, t) = 2p \nabla p - 2ct \nabla r
\]

so:

\[
R/\epsilon < |\nabla p|/|p| = ct|\nabla r|/p^2 \leq ctR/p^2(x)
\]

so we have \(p^2(x) < ct\epsilon \). But then:

\[
r(x) = (p^2(x) + bt^2)/(2ct) < \epsilon/2 + bt/(2c) = \epsilon(1 + t)/2 \leq \epsilon.
\]

So \(x \) must be in some \(U_e \). In local coordinates we then have:

\[
0 = \nabla_x g(x, t) = (-4ctx_1, \ldots, -4ctx_{n-1}, -4ctx_n + 2\alpha_e(x_n)\alpha'_e(x_n))
\]

from which we see that \(x_i = 0 \) for \(i < n \). But also:

\[
0 = g(x, t) = \alpha_e(x_n)^2 + bt^2 - 2ctx_n^2.
\]

So \(2ct \geq \gamma_1^2 \), contradicting our choice of \(c \). So \(\nabla_x g \neq 0 \) on \(V \cap \mathbb{R}^n \times (0, 1] \) as required.

So it only remains to show that \(V_1 \) is isotopic to \(\Sigma^{n-1} \). Let \(p^{-2}(b) \) denote \(p^{-1}([-\sqrt{b}, \sqrt{b}]) \) and let \(V_1^+ = V_1 \cap \{ x \mid p^2(x) \geq b \} \). What we will show is that \(V_1^+ \) is diffeomorphic to \(p^{-2}(b) \) with two discs removed for every \(\epsilon \in \mathcal{E} \). Moreover \(V_1 \) is obtained from \(V_1^+ \) by gluing a one handle between each pair of these discs. But \(p^{-2}(b) \) is the boundary of a regular neighborhood of \(p^{-1}(0) \), which is \(\Sigma \) disjoint union a collection of spheres. Just as in [AK3] the one handles have the effect of connected summing these boundary components and we end up with \(V_1 \) being a manifold isotopic to \(\Sigma \).

For each \(\epsilon \in \mathcal{E} \) and \(k = \pm 1 \), let \(D_{ke} = U_e \cap p^{-1}(k\sqrt{b}) \cap r^{-1}((0, \epsilon]) \) which in the local coordinates around \(x_e \) is:

\[
D_{ke} = \{ x \mid x_n = b_k \text{ and } \sum_{i=1}^{n-1} x_i^2 \leq \epsilon - b_k^2 \}
\]

where \(b_k = \alpha_e^{-1}(k\sqrt{b}) \). Note \(\alpha_e(\pm \sqrt{\epsilon})^2 = e\gamma_e(\pm \sqrt{\epsilon})^2 > 2\epsilon = 2b \), so \(|b_k| < \sqrt{\epsilon} \) and so each \(D_{ke} \) is an \(n-1 \) disc. Now let \(E_e = U_e \cap V_1 \cap p^{-1}([-\sqrt{b}, \sqrt{b}]) \) which in the local coordinates around \(x_e \) is:

\[
E_e = \{ x \mid b_{-1} \leq x_n \leq b_1 \text{ and } \sum_{i=1}^{n-1} x_i^2 = \epsilon/2 + x_n^2(\gamma_e^2(x_n)/(2c) - 1) \}
\]

Recall \(\gamma_e^2 > 2c \) so each \(E_e \) is a one handle \([-1, 1] \times S^{n-2} \) attached to \(\partial D_{1e} \cup \partial D_{-1e} \). We claim that \(V_1^+ \) is isotopic to \(p^{-2}(b) \cap r^{-1}((\epsilon, \infty)) \) rel \(p^{-2}(b) \cap r^{-1}(\epsilon) = \bigcup_{\epsilon \in \mathcal{E}} \partial D_{1e} \cup \partial D_{-1e} \). So once we show this, then we know \(V_1 \) is isotopic to \(p^{-2}(b) \) with a one handle attached near each \(x_e \). But this is isotopic to \(\Sigma \).

The isotopy from \(V_1^+ \) to \(p^{-2}(b) \cap r^{-1}((\epsilon, \infty)) \) is obtained by integrating the vector field \(-p\nabla p \), which points into the region \(\{ x \mid p^2(x) \geq b \text{ and } g(x, 1) \leq 0 \} \) on \(V_1^+ \) and out on \(p^{-2}(b) \cap r^{-1}(\epsilon, \infty)) \). To see it points in on \(V_1^+ \), recall that we saw above that \(|p(x)| < \delta \) if \(g(x, 1) = 0 \). But this means \(|\nabla p(x)|/|p(x)| > R/\epsilon \) by our choice of \(\delta \) so:

\[
-p\nabla p \cdot \nabla_x g = -2p^2|\nabla p|^2 + 2c\nabla r \cdot \nabla p
\]

\[
\leq -4c\epsilon|\nabla p|^2 + 2c|p||\nabla r||\nabla p| \leq -2c|p\nabla p|\epsilon|\nabla p|/|p| - R
\]

\[
< -cR|\nabla p| < 0.
\]
There are a number of routes to obtaining the desired Z from V. One route is to use Proposition 2.6.1 of [AK3] to algebraically crush V_0 to a point, then invert through the sphere to send this point to infinity. This would correspond to the transformation $(x, t) \mapsto (x, 1)/(t + |x|^2)$. We’ll take another route, corresponding to the transformation $\theta(x, t) = (x^t, 1/t)$.

Let $g^*(x, t, s)$ be the homogenization of g. Let $G(x, t) = g^*(x, 1, t)$ and let $Z = G^{-1}(0)$. Note that $Z - \mathbb{R}^n \times 0 = \theta(V - V_0)$.

We want to show for large enough radii R that $(S^*_R, S^*_R \cap Z)$ is diffeomorphic to (S^n, Σ^{n-1}). But this follows from uniqueness of algebraic regular neighborhoods of infinity. Since [D] does not explicitly deal with regular neighborhoods of pairs we will outline the argument which is similar to arguments in [D]. Consider $D = \{(x, t) \mid 1 \leq t \text{ and } |x|^2 + t^2 \leq R^2\}$. The boundary of D is $D_+ \cup D_-$ where D_+ is the disc $\{(x, 1) \mid R^2 - 1 \geq |x|^2\}$ and D_- is the spherical cap $\{(x, t) \in S^*_R \mid 1 \leq t\}$.

For large enough R there is a vector field $(w, 1)$ on D which is tangent to Z and points outward on D_+ and inward on D_-. Integrating this vector field gives a diffeomorphism between the pairs $(D_-, D_- \cap Z)$ and $(D_+, D_+ \cap Z)$. Note that $D_- \cap Z = V_1 \approx \Sigma$ and $D_+ \cap Z = S^*_R \cap Z$ and consequently $(S^*_R, S^*_R \cap Z)$ is diffeomorphic to (S^n, Σ^{n-1}).

This completes the proof of Lemma 2.

5. Proof of Theorem 1

First, suppose $\text{int}(X^n)$ is diffeomorphic to a nonsingular, real algebraic subset of \mathbb{R}^{n+1}. Then for large r, $\partial B_{r}^{n+1} \cap \text{int}(X^n)$ in a smooth manifold Σ^{n-1} that collars $\text{int}(X^n)$ at infinity (see section 2 of [M3] and use stereographic projection to compactify \mathbb{R}^n). Let $X^*_0 = B_{r}^{n+1} \cap \text{int}(X^n)$. Now, ∂X^n and ∂X^*_0 are not necessarily diffeomorphic, however, it is not difficult to see that they are invertibly cobordant (see [St]), say by $(W; \partial X^n, \partial X^*_0)$. By definition, $(W; \partial X^n, \partial X^*_0)$ embeds smoothly in $\partial X^*_0 \times [0, 1]$. Using this and the fact that there is a smooth, proper embedding $X^*_0 \hookrightarrow B_{r}^{n+1} \approx D^{n+1}$, it follows that there is $X^n \hookrightarrow D^{n+1}$ a smooth, proper embedding, as desired.

The other direction follows from Lemma 2 and the following:

Lemma 3. Let $V \subset \mathbb{R}^n$ be a codimension one real algebraic set with $\text{Sing} V$ compact. Let $M \subset \mathbb{R}^n$ be a proper smooth codimension one submanifold so that for some R, $M - B^*_R = V - B^*_R$. Then there is a nonsingular real algebraic set $W \subset \mathbb{R}^n$ properly isotopic to M. In fact, we may suppose there is a smooth isotopy $h_t: \mathbb{R}^n \to \mathbb{R}^n$ and a radius R' so that h_0 is the identity, $h_1(M) = W$, and $|h_t(x)| = |x|$ whenever $|x| \geq R'$.

Proof. Pick a polynomial $p: \mathbb{R}^n \to \mathbb{R}$ generating the ideal of polynomials vanishing on V. So $p^{-1}(0) = V$ and the only solutions to $p = 0$ and $\nabla p = 0$ are $\text{Sing} V$. Let $r(x) = |x|^2$. Let $q(x) = p^2(x) + |\nabla p|^2|x|^2 - (\nabla p \cdot x)^2$. Then $q^{-1}(0)$ is the set of points in V where ∇p and x are linearly dependent, so it is the union of $\text{Sing} V$ and the critical points of $r|_{\text{Sing} V}$. Thus $q^{-1}(0)$ is compact which means by Lemma 2.1.5 of [AK3] that for some radius R'' and integer $m \geq 0$, $q(x) \geq 3|x|^{-2m}$ whenever $|x| \geq R''$. Since M separates \mathbb{R}^n we may find a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ and a radius $R' > R''$ so that 0 is a regular value of f, $f^{-1}(0) = M$, and $f(x) = p(x)$ if $|x| \geq R'$. Pick an integer $k > 1 + m + \deg(p)$.
Choose $\epsilon > 0$ so $|\nabla f(x)| > \epsilon$ whenever $|f(x)| < \epsilon$ and $|x| \leq R'$. Also make sure that $|\nabla p(x)| < |x|^{2k-2m-2}/\epsilon$ whenever $|x| \geq R'$. Also make sure that $\epsilon < (R')^{2k-m}$.

By Lemma 2.8.1 of [AK3] applied to $f - p$ there is an entire rational function $u: \mathbb{R}^n \to \mathbb{R}$ approximating f so $|f(x) - u(x)| < \epsilon(1+|x|^2)^{-k}$ and $|\nabla f(x) - \nabla u(x)| < \epsilon(1+|x|^2)^{-k}$ for all $x \in \mathbb{R}^n$. Let $W = u^{-1}(0)$.

Let $F(x,t) = tu(x) + (1-t)f(x)$. We claim there is a vector field $(v(x,t),1)$ on $\mathbb{R}^n \times [0,1]$ tangent to $F^{-1}(0)$ so that $v(x,t) \cdot x = 0$ if $|x| \geq R'$. Then integrating this vector field gives the isotopy h_t.

It suffices to construct v locally. Locally we may take $v = 0$ if $F \neq 0$. If $F(x,t) = 0$ and $|x| < R'$ we will locally take $v(x,t) = \alpha(x,t)v'(x,t)$ for an appropriate α, in particular:

$$
\alpha(x,t) = \frac{(f(x) - u(x))/((\nabla f)^2 - t\nabla f \cdot (\nabla f - \nabla u))}{v'(x,t) \cdot ((1-t)\nabla f - t\nabla u)}.
$$

If $F(x,t) = 0$ and $|x| \geq R'$ we will locally take $v(x,t) = \alpha(x,t)v'(x,t)$ where $v'(x,t) = |x|^2\nabla f - (\nabla f \cdot x)x$ for an appropriate α, in particular:

$$
\alpha(x,t) = \frac{(f(x) - u(x))/v'(x,t) \cdot ((1-t)\nabla f - t\nabla u)}{v'(x,t) \cdot ((1-t)\nabla f - t\nabla u)}.
$$

Note $p^2(x) = f^2(x) - t^2(f(x) - u(x))^2 \leq e^2|x|^{-4k} < |x|^{-2m}$ so the denominator is nonzero since:

$$
\begin{align*}
&v'(x,t) \cdot ((1-t)\nabla f - t\nabla u) = q(x) - p^2(x) + tv'(x,t) \cdot (\nabla f - \nabla u) \\
&\quad\quad\quad \geq 3|x|^{-2m} - |x|^{-2m} - 2|x|^2|\nabla p||\nabla f - \nabla u| \\
&\quad\quad\quad > 2|x|^{-2m} - 2\epsilon|x|^2-2k|\nabla p| > 0.
\end{align*}
$$

□

References

Department of Mathematics, University of Maryland, College Park, MD 20742

E-mail address: jsc3@math.umd.edu

Department of Mathematics, University of Maryland, College Park, MD 20742

E-mail address: hck@math.umd.edu