
WHEN IS A NUMERICAL SEMIGROUP A QUOTIENT?

TRISTRAM BOGART, CHRISTOPHER O’NEILL, AND KEVIN WOODS

Abstract. A natural operation on numerical semigroups is taking a quotient by a
positive integer. If S is a quotient of a numerical semigroup with k generators, we
call S a k-quotient. We give a necessary condition for a given numerical semigroup S
to be a k-quotient, and present, for each k ≥ 3, the first known family of numerical
semigroups that cannot be written as a k-quotient. We also examine the probability
that a randomly selected numerical semigroup with k generators is a k-quotient.

1. Introduction

We denote N = {0, 1, 2, . . . }, and we define a numerical semigroup to be a set S ⊆ N
that is closed under addition and contains 0. A numerical semigroup can be defined
by a set of generators,

〈a1, . . . , an〉 = {a1x1 + · · · anxn : xi ∈ N},
and if a1, . . . , an are the minimal set of generators of S, we say that S has embedding
dimension e(S) = n. For example,

〈3, 5〉 = {0, 3, 5, 6, 8, 9, 10, . . .}
has embedding dimension 2.

If S is a numerical semigroup, then an interesting way to create a new numerical
semigroup is by taking the quotient

S
d

= {t ∈ N : dt ∈ S}

by some positive integer d. Note that 1
d
S is itself a numerical semigroup, one that in

particular satisfies S ⊆ 1
d
S ⊆ N. For example,

〈3, 5〉
2

= {0, 3, 4, 5, . . .} = 〈3, 4, 5〉.

Quotients of numerical semigroups appear through the literature over the past couple
of decades [17, 18] as well as recently [1, 14]; see [19, Chapter 5] for a thorough overview.

Definition 1.1. We say a numerical semigroup S is a k-quotient if S = 〈a1, . . . , ak〉/d
for some positive integers d, a1, . . . , ak. The quotient rank of S is the smallest k such
that S is a k-quotient, and we say S has full quotient rank if its quotient rank is e(S)
(since S = S

1
, its quotient rank is at most e(S)).
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Numerical semigroups of quotient rank 2 are precisely the proportionally modular
numerical semigroups [22], which have been well-studied [6, 21]. This includes arith-
metical numerical semigroups (whose generators have the form a, a+d, . . . , a+kd with
gcd(a, d) = 1), which have a rich history in the numerical semigroup literature [2, 4, 9].
In fact, generalized arithmetical numerical semigroups [16], whose generating sets have
the form a, ah+ d, . . . , ah+ kd, can also be shown to have quotient rank 3.

For quotient rank k ≥ 3, much less is known. It is identified as an open problem
in [8] that no numerical semigroup had been proven to have quotient rank at least 4.
Since then, the only progress in this direction is [13], wherein it is shown there exist
infinitely many numerical semigroups with quotient rank at least 4, though no explicit
examples are given.

With this in mind, we state the main question of the present paper.

Main Problem. When is a given numerical semigroup S a k-quotient?

Our main structural results, which are stated in Section 2, are as follows.

• We prove a sufficient condition for full quotient rank (Theorem 2.1), which we
use to obtain, for each k, a numerical semigroup of embedding dimension k + 1
that is not a k-quotient (Theorem 3.1). When k ≥ 3, this is the first known
example of a numerical semigroup that is not a k-quotient. We also construct,
for each k, a numerical semigroup that cannot be written as an intersection of
k-quotients (Theorem 3.2), settling a conjecture posed in [13].
• We prove quotient rank is sub-additive whenever the denominators are coprime.

This provides a new method of proving a given numerical semigroup is a quotient:
partition its generating set, and prove that each subset generates a quotient, e.g.,

〈11, 12, 13, 17, 18, 19, 20〉 = 〈11, 12, 13〉+ 〈17, 18, 19, 20〉 =
〈11, 13〉

2
+
〈17, 20〉

3

=
3〈11, 13〉+ 2〈17, 20〉

2 · 3
=
〈33, 34, 39, 40〉

6
.

We use this result to prove that any numerical semgiroup with maximal embed-
ding dimension (that is, the smallest generator equals the embedding dimension)
fails to have full quotient rank (Theorem 4.5).

Our remaining results are probabilistic in nature. We examine two well-studied
models for “randomly selecting” a numerical semigroup: the “box” model, where the
number of generators and a bound on the generators are fixed [3, 5, 7]; as well as
a model where the smallest generator and the number of gaps are fixed [10], whose
prior study has yielded connections to enumerative combinatorics [20] and polyhedral
geometry [11, 12]. We prove that under the first model, asymptotically all semigroups
have full quotient rank (Theorem 4.1), while under the second model, asymptotically
no semigroups have full quotient rank (Theorem 4.5).
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Our results also represent partial progress on the following question, which has
proved difficult.

Problem 1.2. Given a numerical semigroup S and a positive number k, is there an
algorithm to determine whether S is a k-quotient?

Remark 1.3. Some texts require that the generators of a numerical semigroup be
relatively prime, so that N\S is finite. This assumption is harmless, since any numerical
semigroup can be written as mS, where the generators of S are relatively prime, and
it also doesn’t affect k-quotientability: given a positive integer d, one can readily check
that

mS
d

= m′
(
S
d′

)
,

where m′ = m/ gcd(m, d) and d′ = d/ gcd(m, d).

2. When is S not a k-quotient?

In this section, we give two structural results. The first (Theorem 2.1) is a neces-
sary condition for a given numerical semigroup S to be a k-quotient, which forms the
backbone of the constructions in Section 3 and the probabilistic results in Section 4.
The second (Theorem 2.3) is a constructive proof that quotient rank is sub-additive,
provided the denominators are relatively prime.

In what follows, we write [p] = {1, 2, . . . , p} for any positive integer p, and given a
collection of vectors {vi} and a set of indices I, we define vI =

∑
i∈I vi.

Theorem 2.1. Suppose

S =
〈b1, . . . , bk〉

d
for some bi ∈ N and positive integer d. Given any elements s1, . . . , sp ∈ S with p > k,
there exists a nonempty subset I ⊆ [p] such that sI/2 ∈ S.

Proof. Let b = (b1, . . . , bk). For 1 ≤ i ≤ p, let ci = (ci1, . . . , cik) ∈ Nk be such that

si = d(ci1b1 + · · · cikbk),

which exist since si ∈ S. For a vector v ∈ Zk, define v mod 2 ∈ Zk
2 to be the coordinate-

wise reduction of v modulo 2. For J ⊆ [p], examine cJ mod 2. There are 2p possible J
and 2k possible values for cJ mod 2, with p > k, so there must be two distinct J1 and
J2 such that

cJ1 mod 2 = cJ2 mod 2.

Let I = (J1 \ J2) ∪ (J2 \ J1) be their symmetric difference, which is nonempty. Then

cI mod 2 = cJ1 + cJ2 − 2cJ1∩J2 mod 2 = 0,
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so cI has even coordinates. Let cI = (2q1, . . . , 2qk) where qi ∈ N. Then

sI/2 =
∑
i∈I

(
d · (ci1b1 + · · · cikbk)

)
/2 = d

k∑
j=1

bj
∑
i∈I

cij/2 = d

k∑
j=1

qjbj

is an element of S, as desired. �

Corollary 2.2. Let S = 〈a1, . . . , an〉 be a numerical semigroup. If S does not have full
quotient rank, then there exists I ⊆ [n] such that

aI ∈ 〈aj : j /∈ I〉.
Proof. By applying Theorem 2.1 to the generating set {a1, . . . , an}, we obtain that for
some J ⊆ [n], aJ/2 ∈ S. So there exist cr ∈ N such that∑

j∈J

aj =
∑
r∈R

2crar

where R = {r : cr > 0}. Letting I = J \ R and subtracting each aj with j ∈ J ∩ R
from both sides, we have

aI =
∑
i∈I

ai =
∑

r∈J∩R

(2cr − 1)ar +
∑

r∈R\J

2crar

is an element of 〈aj : j /∈ I〉, as desired. Note that I is nonempty, as otherwise

0 = aI =
∑

r∈J∩R

(2cr − 1)ar +
∑

r∈R\J

2crar ≥
∑

r∈J∩R

ar =
∑
r∈J

ar > 0

since J is nonempty, which is a contradiction. �

Theorem 2.3. If S and T are numerical semigroups and gcd(c, d) = 1, then

S
c

+
T
d

=
dS + cT

cd
.

Proof. First suppose that x ∈ 1
c
S + 1

d
T . Then x = s+ t where cs ∈ S and dt ∈ T , so

cdx = d(cs) + c(dt) ∈ dS + cT
which implies x ∈ 1

cd
(dS + cT ). Note this containment does not require gcd(c, d) = 1.

On the other hand, suppose cdx ∈ dS + cT , so

(2.1) cdx = ds+ ct for some s ∈ S, t ∈ T .
In particular, ct = d(cx− s) is a multiple of d. Since c and d are relatively prime, this
implies that t is a multiple of d, say t = bd. Since t ∈ T , we conclude that b ∈ 1

d
T .

Similarly, we can write s = ac for some a and so a ∈ 1
c
S.

Substituting t = bd and s = ac into (2.1), we obtain

cdx = dac+ cbd = cd(a+ b).

By cancellation, we obtain x = a+ b with a ∈ 1
c
S and b ∈ 1

d
T , as desired. �
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Given the ease of proving Theorem 2.3, it is surprisingly more difficult when the
denominators do have a common factor. In a follow-up to this current paper, we
will translate the quotient operation into a geometric setting, which will allow us to
generalize Theorem 2.3 to drop the “coprime denominators” hypothesis. Intriguingly,
the translation can cause a large blow-up in the numbers, e.g.,

〈11, 13〉
2

+
〈17, 19〉

2
=
〈2416656, 2894591, 3441983, 3869571〉

25357536
.

Based on experimentation, this blow-up seems necessary.

3. Some families of numerical semigroups with full quotient rank

In this section, we produce two families of numerical semigroups: those in the first
have embedding dimension k + 1 but are not k-quotients, so in particular have full
quotient rank (Theorem 3.1); and those in the second are not even intersections of
k-quotients (Theorem 3.2).

Theorem 3.1. Given a positive integer k, let a ≥ 2k be an integer. Define ai = 2a+2i

for i = 0, 1, . . . , k. Then the numerical semigroup

S = 〈a0, a1, . . . , ak〉
is not a k-quotient.

Proof. For 1 ≤ j ≤ 2k − 1, let bj = ω(j)a + j, where ω(j) is the number of 1’s in the
binary representation of j. We first prove that, if T is any k-quotient that contains
a0, . . . , ak (so T = S will be an example), then there exists j (1 ≤ j ≤ 2k − 1) such
that bj ∈ T . Indeed, we apply Theorem 2.1. We know that there exists a nonempty
I ⊆ {0, 1, . . . , k} such that aI/2 ∈ T . If 0 ∈ I, then aI is odd and aI/2 is not an
integer, so we know I ⊆ {1, . . . , k}. Let

j =
∑
i∈I

2i−1.

We have that 1 ≤ j ≤ 2k − 1, and

aI/2 =
∑
i∈I

(
2a+ 2i

)
/2 = |I|a+

∑
i∈I

2i−1 = ω(j)a+ j = bj,

so bj ∈ T .

Now we apply this to T = S. Seeking a contradiction, suppose S is a k-quotient,
and therefore we have some bj ∈ S, that is, bj =

∑k
i=0 aixi with xi ∈ N. Examining

this sum modulo a, and noting that bj = j (mod a) and ai = 2i (mod a), we see that

k∑
i=0

xi ≥ ω(j).
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But a sum of ω(j) generators of S is too large:

ω(j)a+ j = bj ≥ ω(j) · a0 = ω(j)(2a+ 1) ≥ ω(j)a+ a ≥ ω(j)a+ 2k,

a contradiction. Therefore bj /∈ S, and so S cannot be a k-quotient. �

Theorem 3.2. Given a positive integer k ≥ 2, let a ≥ k2k be an integer. As before,
define ai = 2a + 2i and bj = ω(j)a + j, where ω(j) is the number of 1’s in the binary
representation of j. Let N = (2k + 1)a. Then

S = 〈a0, a1, . . . , ak, N − b1, N − b2, . . . , N − b2k−1〉

cannot be written as an intersection of k-quotients.

Proof. Suppose, seeking a contradiction, that S =
⋂p

`=1 S`, where the S` are k-quotients.
Each S` must contain a0, a1, . . . , ak, and we noted in the proof of Theorem 3.1 that this
implies that S` must contain bj for some j. But then S` contains both bj and N − bj,
and so additive closure implies that it contains N . This means N ∈

⋂p
`=1 S` = S. Let

(3.1) N =
k∑

i=1

aixi +
2k−1∑
j=1

(N − bj)yj,

where xi, yj ∈ N. We break into three cases.

• If
∑

j yj ≥ 2, then (3.1) would be too large, as for some j1, j2,

(2k + 1)a = N ≥ (N − bj1) + (N − bj2)
= 2N − (ω(j1) + ω(j2))a− (j1 + j2)

> 2 · (2k + 1)a− 2ka− 2 · 2k

= (2k + 2)a− 2k+1,

which is impossible since a ≥ 2k+1.
• If

∑
j yj = 1, then (3.1) uses exactly one N − bj. But then N = (N − bj) + bj

implies that bj ∈ 〈a0, a1 . . . , ak〉, which we saw was impossible in the proof of
Theorem 3.1 since a ≥ 2k.
• If

∑
j yj = 0, then N =

∑
i aixi. If

∑
i xi ≤ k, then

(2k + 1)a = N ≤ k(2a+ 2k),

which is impossible since a > k2k. On the other hand, if
∑

i xi > k, then

(2k + 1)a = N ≥ (k + 1)(2a+ 1) > (2k + 1)a,

which is also impossible.

In each case, we obtain a contradiction. �
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4. How often do numerical semigroups have full quotient rank?

In this section, we consider the question “how likely is a randomly selected numerical
semigroup to have full quotient rank?” We consider two sampling methods. The first
is the “box” method, wherein a fixed number of generators are selected uniformly and
independently from an interval [1,M ]. Numerical semigroups selected under this model
have high probability (i.e., approaching 1 as M →∞) of having full quotient rank.

Theorem 4.1. Fix a positive integer n. If S = 〈a1, . . . , an〉 where a1, . . . , an ∈ [M ] are
uniformly and independently chosen, then the probability that S has full quotient rank
tends to 1 as M →∞. More precisely, this probability is 1−O(M− 1

n ).

Proof. By Corollary 2.2, it suffices to bound the probability that there exists I ⊆ [n]

such that aI ∈ 〈aj : j /∈ I〉. Let A be this event, and let B be the event that ai ≤M
n−1
n

for some i. We will use that

Pr(A) = Pr(B) Pr(A | B) + Pr(Bc) Pr(A | Bc) ≤ Pr(B) + Pr(A | Bc).

For the first term, the union bound gives us that

Pr(B) ≤ n

(
M

n−1
n

M

)
=

n

M
1
n

.

For the second term, fix a nontrivial subset I ( [n] and bi ∈ N for i /∈ I. If bi > nM
1
n

for some i /∈ I, then since every ai is greater than M
n−1
n , we have∑

j /∈I

bjaj ≥ biai >
(
nM

1
n

)
M

n−1
n = nM.

But aI cannot be this large because it is the sum of at most n−1 integers that are each
at most M . So we need only consider bi ≤ nM

1
n . Letting i∗ = min(I) and m = nM

1
n ,

Pr(A | Bc) ≤
∑
I([n]
I 6=∅

∑
bj≤m
j/∈I

Pr

(∑
i∈I

ai =
∑
i/∈I

biai

∣∣∣∣ a1, . . . , an > M
n

n−1

)

=
∑
I([n]
I 6=∅

∑
bj≤m
j/∈I

Pr

(
ai∗ =

∑
i/∈I

biai −
∑

i∈I\{i∗}

ai

∣∣∣∣ a1, . . . , an > M
n

n−1

)

≤
∑
I([n]
I 6=∅

∑
bj≤m
j/∈I

1

M −M n−1
n

≤
(2n − 2)

(
nM

1
n

)n−1
M −M n−1

n

=
(2n − 2)nn−1

M
1
n − 1

,



8 BOGART, O’NEILL, AND WOODS

where the second inequality comes from the fact that for any choice of the ai with
i 6= i∗, there is at most one choice of a∗i that makes the linear equation hold. Thus,

Pr(A) ≤ (2n − 2)nn−1

M
1
n − 1

+
n

M
1
n − 1

= O(M− 1
n ),

which completes the proof. �

Remark 4.2. The “minimally generated” and “finite complement” conditions, which
are often imposed on numerical semigroups, do not affect Theorem 4.1. Indeed, under
this “box” probability model, the chosen generators a1, . . . , an need not form a minimal
generating set. Since the quotient rank is at most the embedding dimension, the
(asymptotically rare) event that the rank of S is less than n contains the event that
the chosen generating set is not minimal. Additionally, the probability that a1, . . . , an
are relatively prime approaches the positive constant 1/ζ(n) by [15], where ζ(n) is the
Reimann zeta function

∑∞
i=1 1/in. Therefore, even if one restricts to those a1, . . . , an

that are relatively prime, the conditional probability that the quotient rank of the
resulting numerical semigroup is less than n still tends to 0.

Under the second model, a numerical semigroup S is selected uniformly at random
from among the (finitely many) with fixed smallest generator m and number of gaps g.
Such numerical semigroups have high probability (i.e., tending to 1 as g → ∞) of
having embedding dimension m (such numerical semigroups are said to have maxi-
mal embedding dimension). We prove that maximal embedding dimension numerical
semigroups never have full quotient rank, illustrating a stark contrast in asymptotic
behavior to the first model.

We first recall a characterization of quotient rank 2 numerical semigroups, which
appears in [19] as a characterization of proportionally modular numerical semigroups
in the case gcd(S) = 1. Our statement here is more general, thanks to Remark 1.3.

Theorem 4.3. A numerical semigroup S with gcd(S) = D has quotient rank 2 if and
only if there exists an ordering b1, . . . , bn of its minimal generators such that:

(a) gcd(bi, bi+1) = D for 1 ≤ i ≤ n− 1; and
(b) bi−1 + bi+1 is divisible by bi for 2 ≤ i ≤ n− 1.

Lemma 4.4. For any a, b,m ≥ 1, the numerical semigroup S = 〈m, am − 1, bm + 1〉
is a 2-quotient.

Proof. If e(S) ≤ 2, then S is clearly a 2-quotient. Otherwise, letting b1 = am − 1,
b2 = m, and b3 = bm + 1, it is clear that gcd(b1, b2) = gcd(b2, b3) = 1 and that
b2 | (b1 + b3). As such, S is a 2-quotient by Theorem 4.3. �

Theorem 4.5. If m = min(S \ {0}), then S is an (m− 1)-quotient. In particular, if
e(S) = m, then S does not have full quotient rank.
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Proof. If S = S
1

has embedding dimension less than m, then the proof is immediate.
If not, then S has m minimal generators, and so they must all have distinct residues
modulo m. That is,

S = 〈m, b1m+ 1, . . . , bk−1m+ (m− 1)〉
for some positive integers b1, . . . , bm−1. Write S = S1 + S2 where

S1 = 〈m, b1m+ 1, bk−1m+ (m− 1)〉, S2 = 〈b2m+ 2, . . . , bm−2m+ (m− 2)〉.
Now by Lemma 4.4, S1 as a 2-quotient, and S2 = S2

1
is trivially an (m − 3)-quotient.

Since 1 is coprime to every integer, Theorem 2.3 implies S is an (m− 1)-quotient. �
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Email address: tc.bogart22@uniandes.edu.co

Mathematics Department, San Diego State University, San Diego, CA 92182
Email address: cdoneill@sdsu.edu

Department of Mathematics, Oberlin College, Oberlin, OH 44074
Email address: kwoods@oberlin.edu


