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Vibration–rotation–tunneling dynamics calculations for the
four-dimensional (HCl) 2 system: A test of approximate models

M. J. Elroda) and R. J. Saykally
Department of Chemistry, University of California, Berkeley, California 94720

~Received 26 October 1994; accepted 5 April 1995!

Several commonly used approximate methods for the calculation of vibration–rotation–tunnel
spectra for~HCl!2 are described. These range from one-dimensional models to an exact coup
four-dimensional treatment of the intermolecular dynamics. Two different potential surfaces we
employed—anab initio and our ES1 experimental surface~determined by imbedding the
four-dimensional calculation outlined here in a least-squares loop to fit the experimental data, wh
is described in the accompanying paper@J. Chem. Phys.103, 933 ~1995!#. The most important
conclusion deduced from this work is that the validity of the various approximate models
extremely system specific. All of the approximate methods addressed in this paper were found t
sensitive to the approximate separability of the radial and angular degrees of freedom, whe
exists the primary difference between the two potentials. Of particular importance, the commo
used reversed adiabatic angular approximation was found to be very sensitive to the choice for fi
R; an improper choice would lead to results very much different from the fully coupled results a
perhaps to false conclusions concerning the intermolecular potential energy surface. ©1995
American Institute of Physics.
g
d

T

fy
n
C

s
s
m
o

d

f
IP
u
g
b
o
ic
e

a
n
b

in
o-
o
c-
ion
a

n-

-
ly

n
,

g

s

r
k,
ry
ant
n-

l-
-
gly

i-
of
lar
ch-
of
t the
I. INTRODUCTION

The determination of intermolecular potential ener
surfaces~IPS! from high resolution spectroscopy depen
explicitly on the accuracy of the dynamical methods used
calculate such spectra from model potential surfaces.
spectra of weakly bound complexes~WBCs! are particularly
difficult to calculate because most of the common simpli
ing assumptions used to interpret the spectra of covale
bound molecules are not applicable. The dynamics of WB
are characterized by a hierarchy of nuclear motions. The
tramolecular vibrations of the constituent monomers can u
ally be treated using a standard semirigid molecule analy
but the coupling of these degrees of freedom to the inter
lecular coordinates constitutes a much more difficult pr
lem. For many systems of interest, however, theintramolecu-
lar vibrational frequencies are 1–2 orders of magnitu
larger than the correspondingintermolecular frequencies,
suggesting an adiabatic separation of these degrees of
dom. Because of the existence of multiple minima on the
as well as low barriers separating them, the intermolec
nuclear motions of WBCs are often characterized by stron
coupled and highly anharmonic dynamics that are often
ter described as tunneling motions or hindered internal r
tion. The existence of such large amplitude dynam
suggests the applicability of a coordinate system which
plicitly considersall possible intermolecular geometries. Th
use of such a global coordinate system~and an appropriate
Hamiltonian! implies that none of the 3N-6 ~although the
intramolecular degrees of freedom are often adiabatic
separated! degrees of freedom are arbitrarily separable, a
the full dimensionality of the dynamics problem must

a!Present address: Department of Earth, Atmospheric, and Planetary
ences, Massachusetts Institute of Technology, 54-1312, Cambridge,
02139.
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retained. This situation represents a very serious escalation
computational cost; for a general dimer complex, the nonr
tating intermolecular dynamics problem can involve up t
six dimensions. For the typical case where ten basis fun
tions are needed for each dimension, each added dimens
represents a 100-fold increase in required memory and
1000-fold increase in required CPU time when using sta
dard direct diagonalization methods.

Because of these limitations, fully coupled intra- inter
molecular dynamics calculations have been carried out on
for a few simple systems.1–3 In addition, calculations involv-
ing only the intermolecular degrees of freedom have bee
generally limited to systems with four dimensions or less
with the notable exceptions: CH4H2O,

4 Ar2HCl,
5 ~NH3!2,

6,7

and ~H2O!2.
8,9 The systems for which such calculations

have been used in conjunction with least-squares fittin
of vibration–rotation–tunneling~VRT! spectroscopic data to
determine improved intermolecular potential surface
are1,2,10,11ArH2, ArHF, ArHCl, ArH2O, HeCO, and ArNH3.
By comparing the extensive spectroscopic literature fo
dimer systems to the much smaller body of theoretical wor
it is quite apparent that calculations providing the necessa
connection between the experimental data and the relev
intermolecular potential energy surfaces urgently need atte
tion.

Although continuing advances in computational techno
ogy and the development of more efficient calculation meth
ods are assured, the demand for calculations of increasin
higher dimension will always outstrip the ability to perform
such calculations exactly. Because of this problem, approx
mate methods will continue to be important in the process
analyzing spectra in terms of the associated intermolecu
potential energy surfaces. However, these approximate te
niques must be used judiciously, since possible failures
these approaches can lead to erroneous conclusions abou
potential surface of interest.

Sci-
MA
92121/12/$6.00 © 1995 American Institute of Physicst¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



m

r-
p

s

e
u

r
n

a

-
a

-
s

o

te

-
n-

.

c
-
.
-
s

ot
d

l-
y

922 M. J. Elrod and R. J. Saykally: Vibration–rotation–tunneling for (HCl)2
It is the purpose of this paper to examine several wide
used approximate methods—to compute the VRT dyna
ics—for the hydrogen-bonded~HCl!2 system. We compare
results from two different IPS describing the HCl–HCl inte
action to demonstrate that the reliability of the various a
proximate techniques is strongly system dependent. One
these potentials was determined byab initiomethods12,13and
has been previously used in a four-dimensional clo
coupling calculation14 of theJ50 states of~HCl!2 as well in
several of the approximate methods that will be describ
below. In this work, we extend the four-dimensional calc
lations on thisab initio surface toJ51 states and to the
isotopomers~DCl!2 and~HCl!~DCl! using an efficient varia-
tional method. In the accompanying paper~called II!, the
four-dimensional variational method described in this wo
is used to fit new and previously existing high resolutio
spectroscopic data for~HCl!2 and ~DCl!2 to a new intermo-
lecular potential energy surface~denoted ES1!—the second
of the two potentials used in this work.

II. SPECTROSCOPIC NOMENCLATURE AND
COORDINATE SYSTEM FOR (HCl)2

For the purposes of discussing the VRT levels of~HCl!2,
it is necessary to adopt a notation to describe the intra-
intermolecular vibrations of the complex. The high fre
quency HCl stretching modes are denotedn1 andn2, for the
‘‘free’’ and ‘‘bound’’ monomers, respectively. For the inter
molecular modes, the in-plane ‘‘antigeared’’ bending vibr
tion is denotedn3, the intermonomer stretch is denotedn4,
the in-plane ‘‘geared’’ bend is denotedn5, and the out-of-
plane bend is denotedn6. The n5 mode correlates with the
preferred very low barrier donor–acceptor interchange tu
neling path, and then550→1 energy difference can be iden
tified as the tunneling splitting resulting from this proces
An energy level diagram for~HCl!2 is depicted in Fig. 1. The
intermolecular eigenstates are labeled with the following n
tation: un3n4n5n6&. It is also useful to classify the VRT levels
according to their irreducible representation in theC2h(M )
molecular symmetry group~see Table I for character table!.
The electric dipole selection rules requireA↔A or B↔B
and1↔2. The four-dimensional intermolecular coordina
system for~HCl!2 is depicted in Fig. 2. Theab initio equi-

FIG. 1. Coordinate system for~HCl!2.

TABLE I. Character table forC2h(M ) molecular symmetry group.

G E ~12! E* ~12!*

A1 1 1 1 1
A2 1 1 21 21
B1 1 21 1 21
B2 1 21 21 1
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librium structure for~HCl!2 is R53.82 Å u157.4° u2587.7°
f5180° with an absolute well depth of 626 cm21.

In order to facilitate the calculation of the angular matrix
elements in the space-fixed coupling scheme, the intermo
lecular potential energy surface is expressed in a single ce
ter spherical expansion:

V~r 1 ,r 2 ,R,u1 ,u2 ,f!5 (
l1l2l

Al1l2l
~R,r 1 ,r 2!gl1l2l~u1 ,u2 ,f!.

~1!

The basis functions,gl1l2l(u1 ,u2 ,f), and the potential coef-
ficients,Al1l2l

(R,r 1 ,r 2), are defined in Paper II for both the
ab initio and the experimental ES1 potential energy surfaces

III. DESCRIPTION OF APPROXIMATE METHODS

In general,ab initio studies often report vibrational fre-
quencies obtained by numerically differentiating the energy
with respect to the proper coordinates to find the harmoni
force constants. However, the use of this approximation in
volves the assumption of both harmonicity and separability
Since the assumption of harmonicity for weakly bound com
plexes is known to be entirely inadequate, these calculation
can usually only be considered qualitatively useful, and we
therefore do not address them in this analysis. We also do n
address the effects of adiabatically separating the intra- an
intermolecular degrees of freedom. Theab initio potential13

for ~HCl!2 predicts that the H—Cl bond length changes by
only 0.001 Å along the donor–acceptor interchange tunne
ing path. This corresponds to a total energy change of onl

FIG. 2. Energy level diagram~states labeled byun3n4n5n6&! for ~HCl!2.
, No. 3, 15 July 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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923M. J. Elrod and R. J. Saykally: Vibration–rotation–tunneling for (HCl)2
0.05 cm21, which is far smaller than the quantitative pre
sion available with the current theoretical approach. Th
the adiabatic separation of the intramolecular coordinate
expected to be an excellent approximation for the calcula
of intermolecular energies for the~HCl!2 system in particu-
lar.

We focus instead on the intermolecular dynamics
~HCl!2, with a view towards elucidating the issue of the a
proximate separability of coordinates. In particular, we d
cuss the separation of the large amplitude donor–acce
interchange tunneling coordinate from the other intermole
lar degrees of freedom using the semirigid bender model
also examine the reversed adiabatic approximation, w
allows a separation of the radial and angular degrees of
dom into individual dynamics problems of one and th
dimensions, respectively. This approximation, in particu
has been widely used for the hydrogen bonded dimer
tems8,15–17despite the troubling fact that the stretching a
bending modes oscillate on comparable time scales. We
address the helicity decoupling approximation~the neglect of
Coriolis coupling terms!, which can be utilized for calcula
tions using body-fixed coordinates. The calculation of sp
tra for the isotopomers of~HCl!2 are also discussed, as t
shift in the center-of-mass based coordinate system com
cates the dynamics calculations. The effects of neglec
this shift are discussed. Calculations at all levels of appr
mation were performed with fixed HCl bond lengths, and
relevant physical constants~bond lengths, atomic masse
and HCl rotational constants! are contained in Table II. In
order to compare with previous calculations,14 we adopt the
procedure of using theexperimentallydetermined rotationa
constant~B0!, while fixing the HCl bond lengths at theirab
initio equilibrium values (r e). Although this procedure is in
consistent, since it is formally proper to use theaverage
bond lengths~andB0!, it ensures an ‘‘experimentally’’ accu
rate evaluation of the intermolecular kinetic energy~which
depends greatly onB0! while providing a more consisten
connection to the theoretically generated potential en
surface. In any case, theintermolecularpotential energy sur
face is only weakly dependent on the HCl bond length
the small differences involved.

IV. THE SEMIRIGID BENDER: A ONE-DIMENSIONAL
TUNNELING APPROXIMATION

In the widely used semirigid bender technique,13,18–23

one large amplitude coordinate is treated rigorously, and
other degrees of freedom are allowed to change param
cally as the molecule executes this effective one-dimensi
motion. Using this treatment, the calculation for the la

TABLE II. Physical data used in all calculations.

Atomic mass~amu! r ~Å! b ~cm21!

H 1.007 825
D 2.014 102
35Cl 34.968 85
H35Cl 1.278 10.4400
D35Cl 1.278 5.3923
J. Chem. Phys., Vol. 1Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subjec
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amplitude geared@~u11u2!/2# donor–acceptor interchange
coordinate in~HCl!2 is recast into a one-dimensional ‘‘tun-
neling coordinate’’ problem. The angular coordinatesr ands
are defined as

r5~u11u2!/2, ~2!

s5~u12u2!/2, ~3!

where 0°<r<180°. Given the complete IPS and an effective
tunneling potential~Vmin!, s andR are expanded in terms of
r to fit this tunneling pathway. Bunkeret al. used aVmin
fitted to points from theab initio potential14 to calculate the
tunneling levels of~HCl!2 and ~DCl!2 via the semirigid
bender approach.13 The following expressions were obtained
for Vmin , s, andR:

Vmin~cm
21!52302375.5 sinr2113.1 sin2 r

1158.2 sin3 r1121.3 sin4 r

144.2 sin5 r, ~4!

s~deg!539.2521.37 sinr11.75 sin2 r

213.28 sin3 r122.19 sin4 r

110.96 sin5 r216.74 sin6 r, ~5!

and

R~Å !5~3.8616/2!$12tanh@0.3~r246.11!#%

1~3.8616/2!$12tanh@0.3~180246.112r!#%

1~3.8070/4!$12tanh@0.3~46.112r!#%

3$12tanh@0.3~r2180146.11!#%. ~6!

The experimental ES1~HCl!2 potential described in Pa-
per II was similarly fit to potential points along the donor–
acceptor interchange tunneling pathway to obtainVmin , s,
andR:

Vmin~cm
21!52782414.5 sinr2104.9 sin2 r

242.5 sin3 r1273.2 sin4 r

1213.9 sin5 r2151.7 sin6 r, ~7!

s~degrees!540.9317.78 sinr25.78 sin2 r

240.15 sin3 r135.91 sin4 r

126.31 sin5 r222.23 sin6 r, ~8!

and

R~Å !53.7310.24 sinr20.09 sin2 r20.96 sin3 r

10.87 sin4 r10.65 sin5 r20.79 sin6 r. ~9!

The semirigid bender Hamiltonian for~HCl!2 is

Hsrb̂5
\2mrr]2

2]r2
1

\2mzzK
2

2
1Vmin~r!, ~10!

wheremrr andmzz are the coordinate-dependent inverse mo
ments of inertia.24 In most applications of this method, the
Schrödinger equation is solved via the Numerov–Cooley
algorithm.21 In our application of the method, we chose to
use a basis set method~distributed Gaussian functions!25 to
solve the differential equation. A basis set of 100 distribute
03, No. 3, 15 July 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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924 M. J. Elrod and R. J. Saykally: Vibration–rotation–tunneling for (HCl)2
Gaussian functions yielded energies converged to better t
0.001 cm21 for the states of interest. The transition momen
and rotational constants can also be calculated from the
sulting eigenvectors,24 although these properties are not o
interest in the present context.

V. REVERSED ADIABATIC APPROXIMATION: 1D
RADIAL PROBLEM

The one-dimensional dynamics calculation for the v
der Waals stretching states is easily accomplished with m
ern computational methods and technology. However, si
the fully coupled calculations described in a following se
tion employ radial basis sets which have been preconditio
~contracted! by solving a one-dimensional problem whic
closely mimics the radial potential of the 4D IPS, we discu
these techniques in more detail. The radial part of the Ham
tonian can be simply written

H rad̂5
\2]2

2m]R2 1Veff~R!. ~11!

There are several possible choices forVeff(R). The most
common approach is to fix the other degrees of freedom
their equilibrium values to determineVeff(R) from the full
IPS. For~HCl!2, it is a better approximation to fix the angu
lar degrees of freedom at theC2h saddle point in order to
approximately take into account the vibrational averagi
resulting from the large amplitude donor–acceptor int
change tunneling. This effective one-dimensional poten
surface is denotedVeff

cut(R). Using a 16 function harmonic
oscillator basis~with variationally optimizeda and r e pa-
rameters! and a 24 point Gauss–Hermite numerical integr
tion scheme, we performed a calculation of this kind for bo
potential surfaces. This method is obviously quite inaccur
for systems which carry out large amplitude excursions fro
their equilibrium geometries.

A more rigorous method for generating an effective on
dimensional potential involves solving the angular part of t
problem exactly~which will be described in the next section!
as a function ofR and using the lowest eigenvalue at eachR
to construct the radial potential, denotedVeff

ang(R). Thus, the
effects of vibrational averaging over the large amplitude a
gular coordinates are thereby treated rigorously as oppo
to the simple one-dimensional cut through the total poten
surface described in the preceding paragraph. In the limi
no coupling between the angular and radial degrees of fr
dom, this approach would yieldexact eigenvalues. Since
three of the four intermolecular coordinates for~HCl!2 are
angles, this approach is almost as time consuming as
forming the full 4D calculation, although important reduc
tions in the basis set size can be achieved.

VI. REVERSED ADIABATIC APPROXIMATION: 3D
ANGULAR PROBLEM

Since most of the complexity of the full IPS for man
systems of current interest is contained in the angular
grees of freedom and since the strongest VRT transitio
involve states which are also associated with these coo
nates, many calculations aimed at rationalizing spectrosco
J. Chem. Phys., Vol. 10Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subjec
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data utilize effective angular approximations. Althorp
et al.15 reported calculations of this kind for~HF!2, ~HCl!2,
and ~HBr!2. The effective angular Hamiltonian~which de-
pends parametrically onR! written in a space-fixed angular
momentum coupling scheme is

Ĥang5b1 ĵ 1
21b2 ĵ 2

21
\2l 2

2mR2 1V~R,u1 ,u2 ,f!. ~12!

Herem is the reduced mass of the complex,b1 andb2 are the
rotational constants of monomers 1 and 2,ĵ 1

2 and ĵ 2
2 are the

rotational angular momentum operators for monomers 1 a
2, l̂ 2 is the orbital angular momentum operator associat
with the end-over-end rotation of the complex, an
V~R,u1,u2,f! is the intermolecular potential energy function
The appropriate space-fixed angular basis is of the form26

u j 1 j 2 j 12lJM &

5 (
m1m1m12n

Yj 1m1
~u1 ,f1!Yj 2m2

~u2 ,f2!Yln~u,f!

3^ j 1m1 , j 2m2u j 12m12&^ j 12m12,lnuJM&, ~13!

where Yj 1m1
(u1 ,f1) is a spherical harmonic and̂j 1m1 ,

j 2m2u j 3m3& is a Clebsch–Gordan coefficient.
27 In the space-

fixed coupling scheme,j 1 and j 2 are coupled to givej 12
which is subsequently coupled withl to give J, the total
angular momentum of the system. OnlyJ andM are con-
served quantities in this scheme. The basis set is truncated
considering onlyj 1 and j 2< jmax.

The effects of the permutation–inversion operators fro
the C2h(M ) molecular symmetry group on the space-fixe
coordinates are listed in Table III. From this information
linear combinations of the basis functions which transfor
as the irreducible representations ofC2h(M ) can be con-
structed in order to partition the Hamiltonian matrix into fou
noninteracting subblocks

u j 1 j 2 j 12lpJM&5
1

A2~11d j 1 j 2
!

@ u j 1 j 2 j 12lJM &

1~21! j 11 j 21 j 121 l1pu j 2 j 1 j 12lJM &].

~14!

Functions withp50 and j 11 j 211 even span theA1 irre-
ducible representation. Similarlyp50; j 11 j 21 l odd,p51;
j 11 j 21 l even, andp51; j 11 j 21 l odd span theA2, B1,
andB2 irreducible representations, respectively.

The angular kinetic energy matrix elements may be ea
ily evaluated in this basis

TABLE III. Effect of C2h(M ) permutation–inversion operators on coordi
nates.

E ~12! E*

u1,f1 u2,f2 p2u1,f11p
u2,f2 u1,f1 p2u2,f21p
u,f p2u,f1p p2u,f1p
3, No. 3, 15 July 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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925M. J. Elrod and R. J. Saykally: Vibration–rotation–tunneling for (HCl)2
^ j 1 j 2 j 12lJM uTu j 18 j 28 j 128 l 8JM&

5Fb1 j 1~ j 111!1b2 j 2~ j 211!1
\2

2mR2 l ~ l11!G
3d j 1 , j 18

d j 2 , j 288
d j 12 , j 128

d l ,l 8 . ~15!

In this formalism, it is convenient to expand the intermolec
lar potential similarly@as defined in Eq.~1!#, since the result-
ing integrals of the potential over the angular basis set
then analytic26

^ j 1 j 2 j 12lJM uVu j 18 j 28 j 128 l 8JM&

5 (
11121

A11121
~R!~21!J1 j 11 j 21 j 128

3S @ j 1#@ j 2#@ j 12#@ l #@ j 18#@ j 28#@ j 128 #@ l 8#@ l1#@ l2#@ l#
2

~4p!3
D 1/2

3S l l l 8
0 0 0D S j 1 l 1 j 18

0 0 0D S j 2 l2 j 28
0 0 0 D

3H l l l 8
j 128 J j12

J H j 128 j 28 j 18
j 12 j 2 j 1
l l2 l1

J , ~16!

where [j ]52 j11, the 2 by 3 matrices in parenthesis an
braces are Wigner 3-j and 6-j symbols, respectively, and the
3 by 3 matrix in braces is a Wigner 9-j symbol.27 The quan-
tum numbers associated with the expansion of the poten
are denoted in bold type in order to prevent confusion w
the end-over-end rotational quantum number associated w
the angular basis.

In addition to energy calculations, this choice for th
angular basis also makes the calculation of other import
properties efficient. From experimental measurements
dipole moments and nuclear quadrupole coupling co
stants, the angular expectation values—^P1~cosu!& and
^P2~cosu!&—can be obtained. However, since the dono
acceptor interchange tunneling is much faster than the e
over-end rotation for symmetric@H~D!Cl#2 complexes,
^P1~cosu1!&1^P1~cosu2!&50. Matrix elements@i.e., l152,
l250, and l52 for ^P2~cosu1!&# are calculated in the deter
mination of the energies, so the calculation of these expe
tion values is a simple sum as dictated by the coefficients
the relevant eigenvector. For the purposes of assigning st
in the calculation of spectra for the mixed dimer~HCl!~DCl!,
these expectation values are invaluable.

The transition intensities may also be easily calculated
this scheme by assuming that the dipole moment of
dimer is approximated by a vector sum of the two monom
moments15

^m i→ f
1 &1^m i→ f

2 &5^ j 1 j 2 j 12lJM uP1~cosu1!

1P1~cosu2!u j 18 j 28 j 128 l 8J8M 8&, ~17!

where
J. Chem. Phys., Vol. 103Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subject
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^m i→ f
1 &5d j 2 , j 28

d l ,l 8~21! j 11 j 181 j 21 j 121 j 128 1 l1M8

3S 3@ j 1#@ j 18#@ j 12#@ j 128 #@J#@J8#

4p D 1/2S j 1 1 j 18
0 0 0 D

3S J 1 J8
M 0 2M 8D H j 12 1 j 128

j 18 j 2 j 1
J

3H J 1 J8
j 128 l j 12

J . ~18!

This expression imposes the usual rotational selecti
rules ~DJ50, 61, DM50!, but the selection rules imposed
by symmetry~A↔A, B↔B, 1↔2! must also be consid-
ered. The relative absorption intensities@I ~v!# can be calcu-
lated from28

I ~v!}vg9@e~2E9/kT!2e~2E8/kT!#@^m i→ f
1 &1^m i→ f

2 &#2,
~19!

wherev5E82E9 and g9 is the degeneracy of the initial
state.

VII. FULLY COUPLED FOUR-DIMENSIONAL
VARIATIONAL APPROACH

The four-dimensional treatment of the intermolecula
dynamics is approximate only in neglecting the coupling
the high frequency H–Cl stretching vibrations to the inte
molecular modes. The four-dimensional technique simply i
volves the extension of the angular approximation to inclu
the radial coordinate. The full intermolecular Hamiltonian i
then

Ĥ5
\2]2

2m]R2 1b1 ĵ 1
21b2 ĵ 2

21
\2l̂ 2

2mR2 1V~R,u1 ,u2 ,f!,

~20!

where the components of the Hamiltonian are defined abo
The corresponding matrix elements are

^nu^j1j2j12lJMuĤuj18j28j128 l8JM&un8&

5@b1j1~ j111!1b2j2~ j211!#dj1,j18dj2,j28dj12,j128 dl,l8dn,n8

1^nuF\2

2m

]2

]R2
1

\2

2mR2
l~l11!G

3dj1,j18dj2,j28dj12,j128 dl,l8

1^j1j2j12lJMuV~R!uj18j28j128 l8JM&un8&, ~21!

wheren represents the radial basis index. In order to ke
the Hamiltonian matrix size manageable, two radial bas
contraction schemes were implemented. In these contract
methods, a model one-dimensional problem is solved and
resulting eigenfunctions are used for the radial basis in t
fully coupled problem. The contraction schemes are then d
ferentiated only by the choice ofVeff(R). The two methods
used here are those described in the previous section on o
dimensional radial approximations. Since theab initio poten-
tial is characterized by relatively small angular–radial co
pling, the effective potential@Veff

ang(R)# generated by the
solution of the angular problem at several values ofR is a
, No. 3, 15 July 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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very accurate description of the true radial potential and
resulting eigenfunctions are very close to the fully coupl
radial eigenfunctions. We used this method for the calcu
tion of properties from theab initio potential. However, the
calculations using the experimental ES1 potential describ
in Paper II utilized the fast, simple fixed-angles method@us-
ing Veff

cut(R)# because the increased degree of angular–ra
coupling in the experimentally determined potential ma
the @Veff

ang(R)# method too inefficient to justify its computa
tional cost. The numerical integration over the radial basis
the coupled problem is accomplished by a 16 point Gaus
Hermite quadrature~harmonic oscillator functions are use
in the primitive basis, such that the differential kinetic oper
tor matrix element can be evaluated analytically!.

VIII. HELICITY DECOUPLING APPROXIMATION

In a body-fixed formalism, it is possible to neglect co
tributions to the total energies from Coriolis coupling—th
‘‘helicity decoupling’’ approximation—in order to keep the
matrix size independent of the total angular momentu
quantum number. The space-fixed formalism, which is us
here, does not allow this simplifying approximation. In ord
to assess whether the usefulness of this approximation co
suggest the superiority of the body-fixed method, we co
pared the explicitJ50→1 spacings~which include the ef-
fects of Coriolis coupling! with values estimated from the
expectation value of 1/R2. The value of̂ 1/R2& was computed
by direct numerical integration over the radial coordina
using the eigenvectors from the full dynamical calculation.
was found that the energy differences varied on average~for
the states of interest! by about 0.001 cm21 and some higher
lying states showed differences as much as 0.004 cm21.
Since the important effects of angular–radial coupling r
sulted in energy shifts of this order, the helicity decouplin
approximation is not appropriate for a completely quanti
tive calculation of the~HCl!2 eigenstates. Therefore, sinc
the full dynamics must be treated to obtain adequate qua
tative results, the efficiency of the calculation method is n
dictated by the choice of body- or space-fixed coordinates
least in this case, since the matrix setup steps dominate
required CPU time.

IX. CONVERGENCE OF THE FOUR-DIMENSIONAL
BASIS SET

The convergence of the basis set expansion is a part
larly important issue in a consideration of the feasibility
performing a least-squares fit to experimental data~as de-
scribed in Paper II!, as the size of the basis directly influ
ences the required CPU time~as well as the obvious memory
limitations!. It should also be noted that the~HCl!2 surface is
significantly more anisotropic than the previously studi
systems of lower dimensionality~Ar-molecule!. This prop-
erty will inevitably result in slower angular basis conve
gence. In Table IV, we list the ground state energies a
several relevant energy differences as a function of the
gular basis set size~jmax! for the ~HCl!2 ab initio potential.
The rate of convergence for each vibrational level is rat
nalized by the position of the eigenstate in the in-plane
J. Chem. Phys., Vol. 103Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subject
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gion of the potential: the slowest converging state is the a
tigeared in-plane bending vibration~u1 0 0 0&! at 220 cm21.
Reference to Table IV reveals that, for theab initio potential,
basis set sizes ofjmax58 are sufficient to converge all ex
perimentally accessed vibrational states to;0.1 cm21.

Because of the small angular–radial coupling evident
the ab initio surface and the fact that none of the van d
Waals stretching vibrations had been experimentally m
sured, it was hoped that relatively small radial basis s
could be successfully implemented so as to keep the to
basis small enough to allow the eigenvalue routine to
embedded in a least-squares iterative loop. As descri
above in the radial approximations section, two differe
‘‘contracted’’ radial basis sets@formed by solving the one-
dimensional radial problem using eitherVeff

cut(R) or Veff
ang(R)

as effective potentials# were used. In Tables VA and VB, the
convergence properties for the contracted radial basis form
from Veff

cut(R) are presented. Similarly, the convergence r
sults for the basis formed fromVeff

ang(R) are presented in
Tables VIA and VIB. Although the ‘‘ang’’ basis converge
the vibrational origins to asatisfactorylevel of accuracy ex-
tremely quickly, the ‘‘cut’’ basis actually converges to ahigh
level of accuracy faster. As was pointed out by LeRo
et al.,29 it is often counterproductive to obtain highly accu
rate eigenvectors from a basis set contraction, since th
functions may not contain enough flexibility to handle th
difference between the one-dimensional and four-dime
sional potentials. Therefore, the ang basis is superior only
situations where the radial basis must be kept extrem
small. In order to achieve satisfactory convergence in b
the angular and radial coordinates, limitations on compu
resources will determine this choice. For the~HCl!2 ab initio
potential, the ang basis is preferable for radial basis set s
of three or less and the cut basis is preferable for basis
sizes of four or more. TheJ50→1 energy differences, which
are the only available experimental observables which
rectly depend on the radial coordinate, are less sensitive
the differences in the two basis sets than are the energie
the vibrational eigenstates. For the calculations on theab
initio potential, a basis set size ofjmax59 andn53 ~for J50
and 1! was chosen as the best compromise to produce
most accurate eigenvalues and the ang radial basis set
therefore chosen. However, in the course of the fitting o
new experimental potential described in the accompany
paper, a basis set size ofjmax58 andn54 was used with the

TABLE IV. Angular convergence properties for~HCl!2 usingab initio ~Ref.
13! potential~energies in cm21 and relative to ground state!.

jmax Ground state u0 0 1 0& u0 0 2 0& u0 0 3 0& u0 0 0 1& u1 0 0 0&

5 2368.735 14.506 61.929 107.294 140.508 231.65
6 2371.108 13.248 61.066 101.394 139.567 224.02
7 2371.632 12.782 59.854 99.848 139.004 221.39
8 2371.773 12.690 59.735 99.414 138.866 220.37
9 2371.804 12.669 59.691 99.335 138.833 220.17
10 2371.810 12.665 59.683 99.316 138.827 220.12
11 2371.811 12.664 59.682 99.312 138.826 220.11
12 2371.811 12.664 59.681 99.312 138.826 220.11

aUsing one radial basis function.
, No. 3, 15 July 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Radial basis set@usingVeff
cut(R)# convergence properties for selected vibrational levels of~HCl!2

usingab initio ~Ref. 13!. potential~energies in cm21!.

A. Vibrational levels~relative to the ground state!
na Ground state u0 1 0 0& u0 2 0 0& u0 0 1 0& u0 0 2 0& u0 0 0 1&

1 2363.598 15.608 62.906 144.108
2 2369.848 59.011 14.278 63.110 138.332
3 2369.931 48.180 113.610 14.274 61.295 137.225
4 2369.933 47.890 92.688 14.274 61.275 137.185
5 2369.933 47.886 92.012 14.274 61.275 137.184
6 2369.933 47.886 92.003 14.274 61.275 137.184

B. J50→1 spacings
na Ground state u0 1 0 0& u0 2 0 0& u0 0 1 0& u0 0 2 0& u0 0 0 1&

1 0.126 57 0.126 49 0.126 71 0.126 93
2 0.121 22 0.125 10 0.120 76 0.123 07 0.119 77
3 0.120 99 0.117 22 0.124 72 0.120 52 0.120 13 0.118 00
4 0.121 00 0.116 40 0.113 70 0.120 52 0.120 10 0.117 87
5 0.121 00 0.116 40 0.111 86 0.120 52 0.120 10 0.117 87
6 0.121 00 0.116 40 0.111 84 0.120 52 0.120 10 0.117 86

aUsing an angular basis withjmax55.
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cut radial basis set to produce optimal results. It should al
be pointed out that the ease of determining of the cut ba
set at each least-squares iteration was also an important c
sideration in this choice.

X. SINGLE-CENTER SPHERICAL EXPANSION OF THE
POTENTIAL

In their fitting of the~HCl!2 ab initio analytical potential,
Bunker et al.13 used the single-center spherical expansio
formalism so that it could directly incorporated into the kin
of calculations described here. To make such variation
methods feasible, it is crucial for the potential to be of th
form so that the integrals of the potential over the angul
basis set are analytic. In our application, this is important f
two important purposes. First, as we described above, this
the same general approach one would use to perform cal
lations on a potential of a general form. In the accompanyin
J. Chem. Phys., Vol. 103¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subject
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paper, we use this formalism to express a previously repor
semiempirical~HCl!2 potential

30 ~which is cast in a site–site
coordinate system! in the single center spherical expansio
and to perform dynamical calculations in order to facilita
comparison to the other available potential surfaces. Seco
these considerations are necessary in order to rigorously
culate spectra for~DCl!2 and ~HCl!~DCl! from the available
potential surfaces for~HCl!2. Although the Born–Oppen-
heimer approximation is assumed here@i.e., ~HCl!2 and
~DCl!2 possess the same potential surface#, it is necessary to
retain a center-of-mass based angular coordinate system
that the angular kinetic energy operators retain their sim
form. Therefore, this requires that coordinate system
shifted to the DCl centers of mass, resulting in new valu
for the angular coefficients.

In their paper describing approximate calculations f
~DCl!2 using a purely electrostatic~dipole and quadrupole
TABLE VI. Radial basis set@usingVeff
ang(R)# convergence properties for selected vibrational levels of~HCl!2

usingab initio ~Ref. 13! potential~energies in cm21!.

A. Vibrational levels~relative to the ground state!
na Ground state u0 1 0 0& u0 2 0 0& u0 0 1 0& u0 0 2 0& u0 0 0 1&

1 2369.554 14.297 61.275 138.869
2 2369.894 48.626 14.273 61.335 137.202
3 2369.915 47.957 93.134 14.276 61.287 137.174
4 2369.922 47.919 92.132 14.277 61.278 137.177
5 2369.925 47.901 92.061 14.276 61.275 137.179
6 2369.927 47.890 92.031 14.275 61.274 137.181

B. J50→1 spacings
na Ground state u0 1 0 0& u0 2 0 0& u0 0 1 0& u0 0 2 0& u0 0 0 1&

1 0.121 10 0.121 04 0.121 25 0.121 45
2 0.120 97 0.116 64 0.120 52 0.120 13 0.117 98
3 0.120 99 0.116 34 0.112 62 0.120 51 0.120 06 0.117 81
4 0.120 99 0.116 37 0.111 74 0.120 51 0.120 08 0.117 82
5 0.121 00 0.116 37 0.111 77 0.120 52 0.120 09 0.117 81
6 0.121 00 0.116 38 0.111 79 0.120 52 0.120 10 0.117 81

aUsing an angular basis withjmax55.
, No. 3, 15 July 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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928 M. J. Elrod and R. J. Saykally: Vibration–rotation–tunneling for (HCl)2
moments only! surface, Schuderet al.17 treated this coordi-
nate shift incorrectly. Although they correctly noted that t
dipole moment of HCl does not depend on themolecular
origin, they neglected to consider the fact that the dipo
dipole interaction ~or multipole–multipole interaction, in
general! is origin dependent. Therefore, the DCl center-o
mass based coordinate system has no direct relationsh
the HCl center-of-mass system and must be determined
rigorous transformation in the same general sense as w
be necessary for a potential expressed in a completely di
ent coordinate system. In practice, the coordinate transfor
tion, $R,u1,u2,f%DCl→$R,u1,u2,f%HCl, is performed by first
transforming to Cartesian coordinates and then transform
back to spherical coordinates in the new reference fram
is necessary to transform from the DCl to the HCl referen
frames, since the potential energy is known only in the H
based coordinate system. The DCl-based potential co
cients are then generated as described in the following p
graph. It should also be pointed out that the adiaba
separation of theintramolecular coordinates will lead to
small differences in the HCl or DCl averagedintermolecular
angular coefficients, but these effects on the energies ar
timated to be much smaller than the errors due to basis
truncation.

In order to determine the angular coefficients, the pot
tial of interest is projected onto the angular basis functio

Al1l2l
~R!5E

0

2pE
0

pE
0

p

V~u1 ,u2 ,f;R!gl1l2l

3~u1 ,u2 ,f!sin u1 sin u2 dfdu1du2 , ~22!

such that for sufficient values ofl1
max and l2

max the following
expression holds:

V~R,u1 ,u2 ,f!5 (
l1l2l

Al1l2l
~R!gl1l2l~u1 ,u2 ,f!. ~23!

The basis functiongl1l2l(u1 ,u2 ,f) is defined in the ac-
companying paper and the integration overf is performed
using an 8 point Gauss–Chebyshev quadrature and the
gration overu1 andu2 is performed using a 6 point Gauss–
Legendre quadrature for each angle. In practice,
Al1l2

(R) coefficients are not fit to an explicitR-dependent
form but are determined for each quadrature point in
integration over the radial basis~usually 16 Gauss–Hermit
points!. For an expansion up tol1

max5l2
max55 ~found to be

adequate for theab initio potential!, there are 91Al1l2l
(R)

coefficients to be determined, of which 56 are unique~the
other 35 can be determined from symmetry!. Of these 56
unique terms, only 25 were used by Bunkeret al.13 to fit the
intermolecular part of theab initio potential. In a genera
expansion of the potential, all 56 terms will be nonzero,
though many may be negligibly small@as will be the case for
the ~DCl!2 expansion#.

XI. RESULTS

A. Fully coupled four-dimensional variational method

We report the complete results of the four-dimensio
calculation using theab initio analytical potential13 in order
J. Chem. Phys., Vol. 10Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subjec
e

–

f-
to

y a
uld
er-
a-

ing
. It
ce
l-
ffi-
ra-
tic

es-
set

n-
s

te-

he

e

l-

al

to provide standards by which to compare the approximat
techniques described above as well as to completely eluc
date the discrepancies with the available spectroscopic r
sults ~which are addressed fully in Paper II!. Using a basis
set of jmax59 andn53, the results for theJ50 andJ51
levels of ~HCl!2 and ~DCl!2 calculated from theab initio
potential are presented in Table VII. TheJ50 levels for
~HCl!2 were previously calculated with a close-coupling
method14 and are in good agreement with the values reporte
here. Since all 91~DCl!2 potential coefficients~for an expan-
sion up tol1

max5l2
max55! are nonzero and must be determined

by three-dimensional numerical integration~at each neces-
sary value ofR! and because the matrix setup time depend
linearly on the number of potential coefficients, the calcula-
tion of energy levels for~DCl!2 is much more expensive than
the same calculation for~HCl!2. In order to prove the neces-
sity of determining rigorously correct~DCl!2 coefficients,
Table VIII shows the results~using a smaller basis set! for
selected spectroscopic properties using both the rigorou
~DCl!2 coefficients and the untransformed~HCl!2 coeffi-
cients. It is clearly seen that the differences in the two cal
culations are unacceptably large, given the desire to quant
tatively compare these energies to the very accuratel
measured spectroscopic data.

In Table IX, we present results for the mixed dimer
~HCl!~DCl! based on theab initio potential~using rigorously
determined potential coefficients!. In addition to the effort
required to determine the potential coefficients, the loss o
permutation symmetry and the resulting increase in the siz
of the matrices makes the calculation of these energy leve
difficult. A basis set size ofjmax

HCl5jmax
DCl58 and only one radial

basis function was used.
In addition, the loss of symmetry makes the assignmen

of the eigenstates difficult—we simply assign a numerica
label to eachJ50 state. In order to aid in making this as-
signment, expectation values of^P1~cosu!& and ^P2~cosu!&
and relative absorption intensities~for the J50→1 transi-
tions originating from the lowest eigenstate and normalized
to the largest value! were also calculated. From the expecta-
tion values, it is apparent that the ground state has an avera
geometry with the DCl subunit as the hydrogen bond donor
while the first excited state has the HCl subunit as the hy
drogen bond donor. The assignment of other states is uncle
although the relative absorption intensities provide an indi
cation of the more strongly allowed transitions.

B. Approximations

In Table X, results obtained with the various approxi-
mate methods are compared with each other and with th
exact 4D results for calculations using the analyticalab initio
potential of Bunkeret al.13 A similar comparison for calcu-
lations using the experimental ES1 potential described in th
accompanying paper is presented in Table XI.

C. Semirigid bender

In Table X, the results for the semirigid bender calcula-
tions are presented in two columns, labeled ‘‘pure’’ and
‘‘fit’’. The results using the one dimensional tunneling poten-
3, No. 3, 15 July 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE VII. Calculated energy levels fromab initio ~Ref. 13! potential surface~in cm21!.

Assignment

~H35Cl!2 ~D35Cl!2

J50 J51 J50 J51

A1 symmetry B2 symmetry A1 symmetry B2 symmetry
u0 0 0 0&Ka50 2373.138 71 2373.017 44 2424.970 95 2424.850 55
u0 0 0 0&Ka512 2362.061 78 2419.388 06
u0 1 0 0&Ka50 2324.601 13 2324.484 63 2373.393 42 2373.277 80
u0 0 2 0&Ka50 2314.045 47 2313.924 91 2385.478 55 2385.358 08
u0 1 0 0&Ka512 2313.452 00 2367.866 37
u0 0 2 0&Ka512 2303.911 35 2380.266 07
u0 2 0 0&Ka50 2278.778 66 2278.667 18 2324.680 49 2324.568 14
u0 2 0 0&Ka512 2267.560 13 2319.267 06
u0 1 2 0&Ka50 2266.913 12 2266.797 47 2337.753 08 2337.636 58
u0 1 2 0&Ka512 2256.591 13 2332.490 79
u0 0 4 0&Ka50 2231.419 96 2231.300 78 2329.661 95 2329.544 04
u0 0 4 0&Ka511 2222.817 91 2324.885 95
u0 2 2 0&Ka50 2222.643 27 2222.530 57 2291.363 26 2291.249 80
u0 2 2 0&Ka512 2212.021 53 2286.072 35
u0 0 1 1&Ka511 2204.927 77 2305.893 03
u0 1 4 0&Ka50 2187.744 52 2187.630 62 2280.673 91 2280.559 70
u0 1 4 0&Ka511 2178.903 91 2275.896 27
u0 0 6 0&Ka50 2168.082 57 2167.967 91 2260.213 88 2260.097 48
u0 1 1 1&Ka511 2163.126 55 2259.810 79
u1 0 0 0&Ka50 2155.174 68 2155.058 80 2265.253 72 2265.136 65
u0 0 6 0&Ka511 2153.014 83 2253.625 04
u1 0 0 0&Ka512 2146.971 90 2260.885 06

A2 symmetry B1 symmetry A2 symmetry B1 symmetry
u0 0 1 0&Ka511 2349.603 90 2415.727 88
u0 1 1 0&Ka511 2299.998 18 2364.644 41
u0 0 3 0&Ka511 2264.881 71 2356.676 22
u0 2 1 0&Ka511 2253.250 38 2316.382 47
u0 0 0 1&Ka50 2237.082 98 2236.964 66 2318.704 32 2318.585 91
u0 0 0 1&Ka512 2225.568 30 2313.080 38
u0 1 3 0&Ka511 2218.217 32 2306.845 37
u0 1 0 1&Ka50 2195.315 60 2195.201 98 2279.214 09 2279.095 49
u0 1 0 1&Ka512 2184.128 66 2274.233 22
u0 0 5 0&Ka511 2182.696 86 2293.099 86
u0 2 3 0&Ka511 2174.093 23 2261.762 38
u0 0 2 1&Ka50 2170.454 15 2170.335 79 2272.533 76 2272.419 97

B1 symmetry A2 symmetry B1 symmetry A2 symmetry
u0 0 1 0&Ka50 2360.705 89 2360.584 91 2421.337 33 2421.217 19
u0 0 1 0&Ka512 2349.604 34 2415.728 70
u0 1 1 0&Ka50 2311.213 41 2311.097 35 2370.279 15 2370.162 86
u0 1 1 0&Ka512 2299.998 59 2364.645 23
u0 0 3 0&Ka50 2274.930 14 2274.810 11 2361.780 56 2361.661 75
u0 0 3 0&Ka512 2264.882 11 2356.677 06
u0 2 1 0&Ka50 2264.566 83 2264.455 11 2321.993 14 2321.880 20
u0 2 1 0&Ka512 2253.250 76 2316.383 25
u0 1 3 0&Ka50 2228.874 85 2228.759 97 2312.065 25 2311.950 35
u0 0 0 1&Ka511 2225.567 78 2313.079 65
u0 1 3 0&Ka512 2218.217 60 2306.846 10
u0 0 5 0&Ka50 2190.655 84 2190.537 48 2297.913 25 2297.795 32
u0 2 3 0&Ka50 2185.284 00 2185.170 25 2267.353 63 2267.240 82
u0 1 0 1&Ka511 2184.128 14 2274.232 06
u0 0 5 0&Ka511 2182.696 26 2293.100 22
u0 2 3 0&Ka512 2174.093 47 2261.763 06

B2 symmetry A1 symmetry B2 symmetry A1 symmetry
u0 0 0 0&Ka511 2362.061 21 2419.387 12
u0 1 0 0&Ka511 2313.451 47 2367.865 49
u0 0 2 0&Ka511 2303.910 81 2380.265 00
u0 2 0 0&Ka511 2267.559 57 2319.266 24
u0 1 2 0&Ka511 2256.590 63 2332.489 76
u0 0 4 0&Ka512 2222.818 37 2324.885 26
u0 0 1 1&Ka50 2216.077 07 2215.958 36 2311.400 67 2311.282 39
u0 2 2 0&Ka511 2212.021 07 2286.071 41
u0 0 1 1&Ka512 2204.928 06 2305.893 87
u0 1 4 0&Ka512 2178.904 52 2275.895 76
u0 1 1 1&Ka50 2173.377 03 2173.263 24 2265.338 30 2265.224 44
u0 1 1 1&Ka512 2163.126 72 2259.811 64
J. Chem. Phys., Vol. 103, No. 3, 15 July 1995Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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tial ~Vmin! determined from the analyticalab initio surface
are presented in the pure column. Based on the discrepan
with experiment apparent in these results, Bunkeret al.
added a term toVmin in order to account for a possible break
down in the model: the difference in zero-point energies
the potential minimum and theC2h transition state.13 The
following term ~with adjustable parameters! was added:

Vadjust52a exp@25.0~r2p/2!2#2~b1c sin r!. ~24!

The values ofa, b, andc were adjusted in a least-squares
to the then existing experimental data-onlyn551 K50–4 for
~HCl!2.

31–33 The results using this adjusted potential~a
537.38 cm21, b54.91 cm21, andc526.82 cm21! are pre-
sented in the column labeled fit. The results for both the p
and fit versions ofVmin are in good agreement with the exa
4D results for theab initio potential, with theVadjust term
bringing theu0 0 1 0& state into much better agreement wit
experiment, although not into better agreement with the fu
coupled results for the pureab initio results.

In Table XI, the results for theVmin directly determined
from the experimental potential surface@which accurately
reproduces all experimentally observed eigenstates for b
~HCl!2 and ~DCl!2# are presented. It is seen that the resu
for this potential are in rather poor agreement with the fu
coupled calculations. In a manner similar to that describ
above, we attempted to find a one-dimensional potential r
resentation that could reproduce both the experimentally
served~HCl!2 and ~DCl!2 spectra forn551 and 2.31–35 Al-
though the new data definitely indicated a lower effecti

TABLE VIII. Comparison of~DCl!2 calculations using the rigorously deter
minedab initio ~Ref. 13! potential coefficients and the approximate~HCl!2
coefficients~energies in cm21 and relative to ground state!.

Rigorous Approximate

Ground stateJ51 0.120 38 0.118 30
Ground stateJ51Ka512 5.580 5.570
u0 0 1 0& 3.971 4.197
u0 0 2 0& 39.874 39.326

TABLE IX. Energy levels, expectation values, and relative absorption
tensities~J50→1 transitions originating from ground state! for ~HCl!~DCl!
usingab initio ~Ref. 13! potential.

State Ka E ~cm21! ^P1&1
a ^P2&1 ^P1&2 ^P2&2 I i←1b

1 0 2402.0 0.051 0.325 20.884 0.710 0.0007
1 2391.6 1.0000

2 0 2383.3 0.811 0.609 20.112 20.297 0.5190
1 2337.2 0.6478

3 0 2350.1 0.403 0.115 20.515 0.234 0.6778
1 2343.4 0.9566

4 0 2319.9 0.436 0.260 20.347 0.170 0.1340
1 2314.0 0.0575

5 0 2288.6 0.016 20.336 20.831 0.566 0.0000
1 2280.5 0.0797

6 0 2283.8 0.366 0.240 20.329 0.222 0.0000
1 2271.5 0.6391

a^Pj& i signifies the expectation value of thej th Legendre polynomial for the
i th subunit: 15HCl, 25DCl.
bTransition intensities normalized to largest values.
J. Chem. Phys., Vol. 10Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subjec
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barrier than that present in either the pure or fitVmin , no
single potential could be found to fit the data satisfactori
~even though the differences in zero point energy were co
sidered!. Considering only the~HCl!2 data, the fit indicated
an effective potential with a barrier of;20 cm21. The one-
dimensional potentials are pictured in Fig. 3. These resu
indicate a substantial breakdown of the semirigid bend
model, which is probably due to coupling of the interchang
coordinate to the radial or torsional degrees of freedom, sin
the experimental data are actually fit~using the fully coupled
method! to a 4D potential with a donor–acceptor interchang
barrier of 48 cm21 as described in Paper II.

D. Reversed adiabatic approximation

1. One-dimensional radial calculation

Because of the small degree of angular–radial coupli
exhibited in theab initio surface, the 1D radial calculation
using the effective potential constructed from 3D angul
energies@Veff

ang(R)# provides very accurate@with respect to
exact calculations using the same~HCl!2 ab initio surface#
estimates of the fully coupled stretching states~n451 and 2!.
The results from the 1D radial calculation using the mo
approximateVeff

cut(R) are less impressive, due to the negle
of the large vibrational averaging evident in the angular c
ordinates.

n-

TABLE X. Comparison of~HCl!2 eigenstates~energies in cm
21 and relative

to ground state! calculated with the approximate methods usingab initio
~Ref. 13! potential.

un3n4n5n6&

1D radiala 1D tunnelinga
3D angular
R53.82 Å Full 4DCut Ang Pure Fit

u0 0 1 0& 8.4 15.5 12.2 12.4
u0 1 0 0& 54.2 48.2 48.5
u0 0 2 0& 60.6 58.9 60.5 59.1
u0 2 0 0& 104.8 91.9 94.4
u0 0 3 0& 98.3 103.2 100.7 98.2
u0 0 0 1& 145.3 136.0
u0 0 1 1& 166.0 157.1
u1 0 0 0& 223.6 218.0

aSee the text for discussion of subheadings.

TABLE XI. Comparison of~HCl!2 eigenstates~energies in cm21 and rela-
tive to ground state! calculated with the approximate methods using exper
mental ES1 potential.

un3n4n5n6&

1D radiala

1D tunneling

3D angular

Full 4DCut Ang 3.75 Å 3.65 Å

u0 0 1 0& 11.5 15.6 27.6 15.7
u0 1 0 0& 74.6 60.9 72.1
u0 0 2 0& 62.0 62.4 72.0 53.3
u0 2 0 0& 142.3 118.2 135.9
u0 0 3 0& 102.6 104.3 116.8 103.9
u0 0 0 1& 167.1 170.1 160.6
u0 0 1 1& 193.8 210.0 185.1
u1 0 0 0& 231.5 235.9 240.8

aSee the text for discussion of subheadings.
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The much more extensive angular-radial coupling e
dent in the experimental ES1 potential energy surface
manifested in the much worse agreement of the o
dimensional results with the fully coupled calculations.
particular, the effective potential constructed by 3D angu
energies@Veff

ang(R)# actually produces worse agreement wi
the fully coupled results than does the simpler 1D poten
cut method.

E. Reversed adiabatic approximation

1. Three-dimensional angular method

For reversed adiabatic calculations using theab initio
potential, the intermolecular distance (R) was fixed at 3.82
Å, the minimum in the potential surface along the enti
donor–acceptor interchange tunneling pathway. For calcu
tions using our ES1 surface, the intermolecular distance w
fixed at two different distances—3.75 and 3.65 Å—the eq
librium distances for the hydrogen bonded structure~equilib-
rium! and theC2h ~top of tunneling barrier! structures, re-
spectively.

By reference to Table X, it is seen that the thre
dimensional calculation results obtained with theab initio
potential are very impressive when compared to the fu
coupled results, indicating the quite good quantitative ac
racy of this method for thisparticular potential energy sur-
face. However, the results in Table XI indicate that the r
versed adiabatic angular approximation~RAA! method is
very sensitive to the choice for fixedR for the experimental
potential, and provides a much less quantitative estimate
the energies when compared to the exact results. Hence
validity of this widely used approximation is highly system
dependent, and results obtained with it should be very ca
fully examined.

XII. SUMMARY

We have examined a hierarchy of approximate calcu
tions for the vibration–rotation–tunneling spectra for~HCl!2

FIG. 3. Ab initio and fitted semirigid Bender tunneling potential energ
surfaces.
J. Chem. Phys., Vol. 10Downloaded¬30¬Jun¬2005¬to¬132.162.177.17.¬Redistribution¬subjec
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ranging from one-dimensional models to a fully couple
four-dimensional treatment of the intermolecular dynamic
We have also reported the results from fully coupled fou
dimensional calculations of~HCl!2 using an analyticalab
initio surface13 extended to the deuterated isotopomers and
total angular momentum states greater than zero. These c
culations were used to facilitate comparisons with the a
proximate methods of lower dimensionality as well as allow
a complete comparison with the available experimental r
sults ~as elucidated in the accompanying paper!. The most
important conclusion arising from this work is the quantita
tive demonstration that the validity of the various approxi
mate models is extremely system specific. We used two d
ferent potentials for~HCl!2—an ab initio13 and the ES1
experimental surface described in the accompanying pape
and found that the approximate methods were much mo
accurate for theab initio potential. All of the approximate
methods addressed in this paper were found to be high
sensitive to the approximate separability of the radial an
angular degrees of freedom, which is the primary differenc
between the two potentials. Of particular importance, th
commonly used reversed adiabatic angular approximati
was found to be very sensitive to the choice for fixedR; an
improper choice would lead to results very much differen
from the fully coupled results and undoubtedly to false con
clusions concerning the intermolecular potential energy su
face. We have also addressed the neglect of Coriolis coupli
terms, and the necessity of performing a proper coordina
transformation for the calculation of spectra for the~HCl!2
isotopomers. Both of these considerations are of substan
magnitude such that a fully quantitative treatment intende
to quantitatively describe high resolution spectroscopic VR
data of~HCl!2 absolutely requires their rigorous inclusion. In
the accompanying paper we describe the determination
the experimental potential surface used to demonstrate
limitations of the approximate methods in this paper. Thi
potential was generated by the least-squares fitting of a d
tailed analytical form for the potential to the complete bod
of available spectroscopic data for~HCl!2 and ~DCl!2, nec-
essarily employing the highest levels of theory described
this paper for the calculation of the relevant eigenstates.
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