Theory, measurement, and methods in the study of family influences on adolescent smoking

Nancy Darling & Patricio Cumsille

Correspondence to:
Nancy Darling
Program in Psychology
Bard College
Annandale-on-Hudson, NY 12504
USA
E-mail: darling@bard.edu

ABSTRACT

This paper discusses three dilemmas faced by researchers interested in family influences in substance use: the transitional nature of adolescent smoking, the complexity and multi-dimensionality of family forms and influences, and the inter-relationship of family influences with other key developmental contexts. Methodological and conceptual issues stemming from these dilemmas are discussed with regard to understanding why previous reviews have found the correlations between family predictors and adolescent smoking to be relatively low. In particular, the importance of understanding time, the transitional nature of the phenomenon, and within- and between-family processes are emphasized. More appropriate conceptual and statistical models for analyzing family influences are suggested, including both mixed models and person-centered approaches.

KEYWORDS
Adolescence, family, methodology, parental monitoring, parenting, substance use, smoking, tobacco use.

INTRODUCTION

Although researchers interested in the development of adolescent smoking have long been interested in family influences, the literature has been less than clear about the strength of relationships (described as ‘unexpectedly low’ by Conrad, Flay & Hill (1992)) or the key processes through which they operate. Researchers interested in studying family influences face three key dilemmas. The first is the nature of adolescent smoking. Most individuals enter adolescence as non-smokers. Many begin smoking during their adolescent years. Some of those who begin to smoke quit, never to smoke again, while others go on to become committed, long-term smokers. In other words, smoking during adolescence is best characterized by change (Petraitis et al. 1995). On the other hand, many of the family characteristics used to predict adolescent tobacco use (e.g. family bonding, parent smoking, parent attitudes toward adolescent smoking, parental monitoring) are relatively stable characteristics. Thus the dilemma: how does one conceptualize the processes that relate stability to change?

The second dilemma researchers interested in family influences on adolescent smoking must grapple with is the nature of the family itself. Although we speak commonly of ‘the family unit’, within-family influences cannot accurately be conceptualized as singular. Instead, mothers, fathers, siblings and other family members each influence adolescents in different ways. Systemic properties of the family operate as well (Whitchurch & Constantine 1993). For example, it is possible that an adolescent might have a greater tendency to begin smoking in a household where her mother, father and only sibling smoke than would be predicted from the simple additive influences of each family member. The confluence of influences may make conformity to family norms more salient (Bronfenbrenner & Morris 1998). Alternatively, a threshold effect may operate, such that a single smoking family member increases adolescent risk to the same extent as three. In other words, modeling family influences on adolescent smoking is complex both because of the number of potential sources of influence within the family and because families have systemic properties over and above the influence of the individuals that compose them. Modeling family influences is complicated further by two
additional characteristics of families. First, families come in many diverse forms. Obviously we would not want modeling maternal and paternal smoking as separate variables to result in all adolescents living in single parent families eliminated from the analyses because of missing data. How should this problem be best addressed? The second problem is more subtle. Family member characteristics are inherently interdependent, posing problems for traditional statistical techniques. For example, if we assume that parent and offspring tobacco use are correlated, how appropriate is it to model sibling influence on adolescent smoking by controlling parent tobacco use? These latter two concerns make use of traditional statistical techniques problematic.

The third dilemma that researchers interested in the influence of the family on adolescent smoking must grapple with is the nature of the family during adolescence. Although we have moved beyond thinking primarily of the family as a place from which adolescents move out (Steinberg 1990), it is still true that a key characteristic of adolescence is the expansion of the social world. Adolescents spend more time in the company of peers and less time with family members than do children (Larson & Richards 1991; Larson et al. 1996). In addition, although parental influence remains strong, especially in areas involving values and long-term goals (Steinberg 1990), peer influence peaks during mid-adolescence, especially in day-to-day activities (Berndt 1979). Thus the relationship between the family and other key contexts should be of special interest to researchers interested in adolescent tobacco use. How do families influence the nature of other contexts to which adolescents are exposed? How do they influence the processes that occur in those other contexts? How are they influenced by outside contexts? How, given the complex nature of the family, can such interrelationships be modeled? Similarly, normative changes in both contexts and behavioral expectations allow greater expression of individual differences in temperament, genetic predispositions and learned attitudes and behaviors in adolescence than in childhood (Scarr & McCartney 1983). How do family characteristics inhibit or facilitate the expression of such individual differences?

This paper has two goals: to examine each of these issues as it relates to developmental patterns of adolescent smoking trajectories and to discuss potential strategies for modeling family processes.

STATUS, STAGE, TRANSITION AND TRAJECTORY

Recent reviews of the literature have highlighted the distinction between examining adolescent smoking status and examining the development of smoking trajectories (Petrakis et al. 1995; Mayhew et al. 2000). Such distinctions are critical in understanding and modeling accurately the relationship between family characteristics and adolescent tobacco use. Status refers to the current categorization of an individual according to the variable of interest: in this case, tobacco use. Such statuses may be as simple as ‘current smoker’ versus ‘current non-smoker’ or they may include an explicit time element, for example ‘never tried tobacco’ versus ‘tried tobacco’. Other status categorization schemes include an implicit time element. For example, Mayhew et al. (2000) explicate four ‘stages’ of tobacco use. Individuals are labeled ‘triers’, ‘experimenters’, ‘regular users’ and ‘dependent users’. Implicit in the stage model is the idea that a snapshot of an individual at any given time tells us something about their historical tobacco use. Just as we assume that the middle-aged individual pictured in a photograph was once a child, the explicated stages imply that a person who is captured in the status of ‘regular user’ has gone through the stages of ‘trier’ and ‘experimenter’ (Petrakis et al. 1995).

Current tobacco use status is limited in what it tells us about time, however, because it captures only a snapshot of a particular temporal moment. In contrast, the concept of ‘transition’ incorporates time explicitly, but incompletely. A transition is defined by change over time, for example, by a move from status 1 (e.g. ‘never tried’) to status 2 (‘experimenter’). Transitions are not identical to time, however, because the unit of analysis is change rather than time. For example, a person who is a non-smoker at both time 1 and time 2 cannot be said to have made a transition, even though time has passed. Similarly, two people, both of whom have moved from status 1 to status 2, may have existed in the statuses for different periods of time. For example, person 1 may have been in status 1 at measurement points 1, 2, and 3, and moved to status 2 at measurement point 4, while person 2 may have been at status 1 at measurement point 1, but status 2 at measurement point 2. Although we can look at the predictors of a transition without regard to time (for example, we can try to differentiate people who never

1 A ‘never used’ category is not included in these stages. Also frequently neglected are statuses that capture current levels that are lower than past use. For example, an individual who had been a heavy smoker but now smokes only occasionally would presumably be at a different stage of tobacco use than someone who currently smokes occasionally but had never shown any other pattern. This distinction highlights the limited way in which time is reflected in categorization schemes based on current status. Most stage models of substance use appear to be based on ‘strong stage’ assumptions, including unidirectionality and irreversibility (Wohlwill 1973). Tobacco use histories, however, are not consistent with these assumptions.
Transitions, then, are quite different from trajectories, which are defined by time rather than by change.² Because the unit is time, change can take a value of 0, so stability is one potential trajectory. The minimum number of time-points needed to capture a trajectory is two,¹ thus the difference between smoking statuses at adjacent time points is change over time (i.e. speed of transition). With more than two points of measurement, trajectories also can include both measures of acceleration (changes in the speed of transition), if change is smooth, and measures of deflection, where comparisons in trajectories are made before and after the temporal occurrence of a particular predictor (divorce or the cessation of parental smoking, for example). The concept of deflection also implies that change can either be toward higher levels of smoking or mark a change to lower levels.

Before going on to discuss trajectories, two additional points should be made about the interface of time with transitions and trajectories. First, like transitions, trajectories implicitly assume ‘within a given time frame’. Take the example where an individual is measured at time 1, time 2, and time 3 and during that time moves from ‘experimenter’ to ‘regular user’ to ‘dependent user’. We can calculate a trajectory for this individual of a movement of two stages within the time frame of time 1 to time 3. A second individual may be observed at time 1 and time 2 as an ‘experimenter’ and time 3 as a ‘regular user’. Within the time frame from time 1 to time 3, the second individual’s trajectory appears to show a slower progression. This is not necessarily the case, however. For example, the first individual may have been an experimenter at time –1 (i.e. at a hypothetical measurement point prior to the start of observation), but was not observed. The second individual may move to ‘dependent user’ at time 4. In other words, both individuals may have identical trajectories of tobacco use, but be observed at different points in their trajectories. This observation introduces additional problems (and error) into the modeling of tobacco use trajectories, a point to be returned to in the discussion of sibling influences on tobacco use.

Secondly, tobacco use trajectories, which are defined by historical or objective time, interface with life course time—i.e. with age (Elder 1998). For example, one would predict a different distribution of normative trajectories of tobacco use at different ages. During the pre-adolescent years, one might expect that the normative trajectory would be a flat pattern of non-use, with a secondary pattern of non-use with a singular status change to ‘ever-tried’. One would also expect a small group of individuals at this age to make a rapid transition from non-user into dependence. For example, Jessor & Jessor (1977), Moffitt (1993), Patterson et al. (1989) and Pulkkinen (1990) all suggest that a certain subset of individuals evince a strong and consistent pattern of highly intercorrelated problem behaviors that appear early in their lives but take somewhat different forms depending on the developmental stage of the individual. Based upon their work, one might expect that individuals who, during late childhood or early adolescence, show a trajectory of rapid movement from tobacco non-use to use would also be more prone toward sensation-seeking and impulse control problems, be more likely to experience dysfunction within the family system, be associated with a deviant peer group, be socially rejected by normal peers and be engaged in a wide variety of other deviant behaviors.¹ However, there is no theoretical or empirical basis from which to predict that the same trajectory of rapid change would be associated with the same set of predictors at a different developmental period—during late adolescence, for example (Moffitt 1993). For late adolescents, one might hypothesize that particular social processes and context (entrance into the military, for example) might predict a steep trajectory from non-use to use (see, for example, Schei & Sogaard 1994). Thus, at different points in the life course, we might predict different distributions of tobacco use trajectories and we might also expect to see different correlates of trajectory types. These two different issues of the interface of time and trajectory (implicit time frame and age), taken together, might help to bring order to the sometimes divergent findings of studies relating family predictors with adolescent tobacco use.

¹Methodologically, the terms ‘transition’ and ‘trajectory’ are used, respectively, in latent transition analysis (LTA) to describe qualitative shifts in status and in growth curve models to describe the quantitative shifts evident in the time component of growth models; however, it is not the intent of this paper to imply a distinction between qualitative and quantitative shifts by this usage.

²However, see Collins & Sayer 2000 for an excellent discussion of why more and more frequent collection of longitudinal data provide better estimates of developmental trajectories.

³This hypothesis about differences in the predictors of similar trajectories (and, implicitly, of the processes underlying these trajectories) at different points in the life course is consistent with Graham et al.’s (1991) finding that adolescents who begin the transition to substance use with tobacco showed a more rapid trajectory to high levels of use than those who began with alcohol. It is also consistent with Brook et al.’s (1996) report that only delinquency predicted smoking among younger adolescents, but that a wider range of contextual variables predicted smoking among older adolescents.
THE NATURE OF ADOLESCENT SMOKING: PREDICTING CHANGE FROM STABILITY

Family characteristics have been used to predict adolescents’ tobacco use statuses, transitions and trajectories. Demographically, adolescents from single-parent and lower SES families, whose families grow tobacco, and adolescents whose parents are less educated are more likely to smoke than their peers (Tyas & Pederson 1998). At the proximal level, strong, positive parent–child bonds, authoritative parenting, higher levels of parental monitoring and parent–child communication, parent disapproval of smoking and parent and sibling non-smoking have all been shown to decrease risk of tobacco use (for reviews see Moncher et al. 1991; Conrad et al. 1992; Hawkins et al. 1992; Centers for Disease Control and Prevention 1994; Avenevoli & Merikangas 2003).

As in most areas of developmental research, the majority of studies present cross-sectional findings and demonstrate associations between family characteristics and adolescent tobacco use status. Longitudinal research has provided researchers with the opportunity to examine both transitions and trajectories. Contrasting the two types of studies has provided some interesting insight into the importance of the distinction between statuses, transitions and trajectories. Longitudinal research has also highlighted the differences in processes (or at least differences in predictors) that are involved in moving from being a non-user to an experimenter, and those involved in moving from experimentation into regular use. For example, Flay et al. (1998) found that peer factors were more important in moving adolescents from trial to experimental stages, but that family processes—specifically parental smoking and family conflicts—predicted transitions from experimental to regular use. In contrast, Chassin et al. (1984) found that parents’ smoking-specific socialization predicted smoking cessation among younger adolescents, but that peer processes predicted cessation among older adolescents. Sibling smoking has been found to predict smoking status (Avenevoli & Merikangas 2003), but not transitions or changes in smoking (Spiehler et al. 1983; Hanson et al. 1985; Ary & Biglan 1988).

Because much of the longitudinal work has focused on the prediction of smoking status from family characteristics, it has obscured the fact that such studies are attempting to predict change from characteristics that are stable. Although such analyses are common, a more careful examination of their underlying assumptions is in order. When a stable family characteristic, such as parent smoking, is used to predict smoking status, the dependent variable is either the end point of a trajectory (for example, when parent smoking is used to predict smoking status in late adolescence) or it is capturing adolescents ‘mid-flight’—i.e. at a particular time point within a trajectory. Because all smoking trajectories start at the same status (non-smoker), the ability to detect differences in adolescents’ trajectories based on estimates at a particular point depends upon where you are in the diverging trajectories. If we start sufficiently early enough, statuses of future smokers and non-smokers will be identical. Thus the ability of a stable predictor to differentiate adolescent trajectories based on smoking status depends upon how appropriate the age of the participants and the time frame of the study is as well as on statistical power and measurement error.

In addition, adolescence is a time when long-term smoking patterns are in flux. Because most individuals enter adolescence as non-smokers, but most people who become smokers start smoking during adolescence, studies of adolescent smoking are inherently studies of change, even when such change is captured as smoking status. Although stable family characteristics may be predictors of change, they cannot be said to be the proximal cause of change. To use an analogy, when a rock rolls down a hillside its movement is not initiated by the hill, but by the person who kicked it. Taking the analogy one step further, one might predict that a rock on a hill will tumble down at some point in the future, but its position on the hill tells you neither when that will happen nor what the particular event that will trigger the change will be. Knowing the rock is on a hillside, however, does allow you to predict that the effect of a kick on it may be different from the effect of a kick on a rock in a field. Focusing on proximal processes operating at points of transition, stable characteristics (such as parental smoking) can predict change only in the presence of a triggering event (such as the offer of a cigarette by a peer).

Triggering events can be internal to the child or they can be environmental. Stable characteristics of the family can make it more likely that a triggering event occurs, they can change the likelihood that a triggering event will be sufficient to cause change, or both. For example, social cognitive theory (Bandura 1989) postulates that the knowledge and ability to enact a behavior is necessary, but not sufficient, condition for the behavior to become manifest. With regard to smoking, growing up in families where parents are observed smoking provides the opportunity for children to learn the rudiments of smoking—how to light a cigarette, how to inhale, what to do with ashes, etc.—and virtually guarantees that smoking becomes part of the repertoire of behaviors that the child is capable of enacting. It also provides knowledge of where and when it is appropriate to smoke—while talking after a meal, drinking alcohol, driving or relaxing, for example. Note that the family is not the only context in which knowledge of smoking behaviors can be acquired (peers
and the media are obvious other sources); however, it is possible that the length and breadth of exposure to smoking in the family make knowledge of smoking acquired in this setting both quantitatively and qualitatively different from that acquired through other sources.

The likelihood that the acquired behavior will be enacted depends upon many other factors. For example, observers are more likely to enact learned behaviors modeled by attractive others who are similar to the observer and behaviors that are observed to have positive consequences. One would expect, then, that smoking by same-gender parents would increase the likelihood that children smoke more than smoking by cross-gender parents, and that parents who are positive about the smoking experience are more likely to be imitated than those who are negative. There is evidence to support each of these hypotheses, although tests have been relatively infrequent and results have been somewhat mixed (Avenevoli & Merikangas 2003). Learned behaviors are also more likely to be enacted when models are attractive. With regard to smoking, one would expect to see the link between parent and child smoking to be strongest in the presence of a positive parent–child bond. Few researchers have investigated this prediction. Interestingly, the preponderance of evidence suggests that poor relationships within the family and low levels of perceived parental support are associated with an increased risk for tobacco use (for review, see Avenevoli & Merikangas 2003) and a greater likelihood of moving from experimental to established smoking (Distefano et al. 1998). Several theorists (Jessor & Jessor 1977; Patterson et al. 1989) have suggested that adolescents who have poor relationships with parents are at increased risk for tobacco use because such relationships increase the likelihood that they will associate with deviant peers, and there is strong evidence to support this contention (Melby et al. 1993; Flay et al. 1994; Biglan et al. 1995; Cohen & Rice 1997; Fraunglass et al. 1997; Chassin et al. 1998). Taken together, these theories suggest that (a) parental smoking will be most influential when adolescents enjoy a positive relationship with their parents and (b) that adolescents are more likely to be part of a peer group that encourages smoking when they experience poor relationships with parents. In other words, good relationships with parents who smoke may make adolescents more vulnerable to a triggering event such as being offered a cigarette, but less likely that they will be in a setting where that situation will occur. It is possible that the inconsistency in the association between parent and child tobacco use (described as 'unexpectedly low' by Conrad et al. (1992; p. 1711)) may be accounted for partially by characteristics of the parent–child relationship or observed consequences of parental smoking that moderate the relationship between parent and adolescent smoking. For example, it seems counterintuitive that observing a parent struggle to quit smoking or suffer from a smoking-related illness would increase the likelihood of tobacco use.

In addition to illustrating the importance of examining moderating effects in understanding family processes (a point brought out again later in this paper), the previous discussion of social cognitive theory also illustrates three mechanisms through which stable family characteristics can predict change in behavior: directly through child characteristics that (1) increase their exposure, (2) increase their vulnerability to triggering events or (3) change the child’s environment in such a way that it increases the likelihood that the child will be exposed to triggering events. Each is discussed in turn.

Stable family characteristics can have a direct effect on child characteristics that change the likelihood that children will be exposed to triggering events

Researchers from the Oregon Social Learning Center have presented compelling evidence that coercive parenting practices experienced in early childhood lead to a sequence of events, mediated through child behavior, that increases the likelihood that individuals will be exposed to deviant peer groups where tobacco use is common and delinquent acts are reinforced (see, for example, Patterson et al. 1989; Dishion et al. 1991, 1996). Although these researchers focus on family reinforcement of aversive child behaviors and children’s failure to acquire prosocial skills, other mechanisms are possible as well. For example, genetic characteristics or prenatal exposure to alcohol are biological mechanisms through which families can influence child sensation seeking or decrease impulse control, each of which may increase the likelihood that children are exposed to triggering events (Rutter et al. 1995). Girls whose mothers smoked during pregnancy are more likely to smoke during adolescence (Kandel et al. 1994). Although part of this effect appears to be mediated through girls’ behavior problems (a result consistent with Patterson, DeBaryshe & Ramsey’s (1989) model of the etiology of deviance), prenatal tobacco

Exceptions to this general trend is the finding by Bauman et al. (1984) that maternal disapproval of smoking is associated only with lower levels of cigarette use when the adolescent is close to the mother (although no such association was found with regard to fathers) and by Andrews, Hops & Duncan (1997) that modeling of parent alcohol and marijuana was highest when adolescents had relatively good relationships with their parents. In contrast, Doherty & Allen (1994) found that parent smoking combined with low family cohesion was the best predictor of smoking. Although inconsistent with what would be predicted from social cognitive theory, these findings are consistent with the contradictory processes that often operate within families, discussed in the next section of the paper.
exposure appears to have a direct effect as well (Griesler et al. 1998). It is possible that such exposure increases girls’ preferences for or responsiveness to tobacco, a point developed in the next section.

Stable family characteristics can have a direct effect on child characteristics that increase the likelihood that triggering events will cause a change in behavior

One way of conceptualizing family characteristics as risk factors is by using the analogy of action potential in nerves. Nerves have a particular action potential that they must reach before firing. Repeated stimulation of the nerve increases its excitation state. The greater the excitation state, the less additional stimulation the nerve needs before it gets above a critical level and the nerve fires. Familial risk factors can be thought of as raising the excitation state of the system. Peer processes are the triggering events that bring the system over the critical level. With higher excitation states, less stimulation is needed to trigger the release of the action potential. For example, exposure to positive smoking models (such as parents) may increase the likelihood that adolescents will accept a cigarette when it is offered. Jessor & Jessor (1977) describe adolescents who are easily influenced to engage in deviant behaviors as ‘transition prone’ and hypothesize that rejection of mainstream values and rejection of parents increases adolescents’ transition proneness by making them more vulnerable to negative peer influences. Although Jessor & Jessor focus on family socialization of dominant norms and the impact of family processes on child personality characteristics, biological processes may be seen to increase transition proneness as well. To the extent that susceptibility to the effects of nicotine or to tobacco addiction or to the extent that personality characteristics such as openness to peer influence have a genetic component, family characteristics may be said to predict susceptibility to triggering events through biological mechanisms. In addition, family characteristics can change biological predisposition to smoke if exposure to nicotine or tobacco smoke (either prenatally or postnatally) increases preferences for or susceptibility to smoking. For example, prenatal exposure to tobacco predicts adolescent girls’ current smoking status, but not their lifetime smoking history, once current maternal smoking is controlled (Griesler et al. 1998). Life-time smoking history is predicted by childhood problem behaviors, but current smoking status is not. These results are consistent with the hypothesis that prenatal tobacco exposure creates a ‘latent addiction’ in girls that is activated by tobacco exposure (Griesler et al. 1998). The likelihood that postnatal tobacco exposure occurs varies depending upon characteristics of the girls’ proximal environment (including her peer group) which, in turn, is dependent partially upon her own characteristics, including childhood problem behavior.

Stable family characteristics can have a direct effect on the likelihood that children will be exposed to triggering events

It is likely that stable family characteristics will influence children’s exposure to triggering events through their influence on children’s social network (for example, through choice of neighborhood or friends). Regional, neighborhood and social class variations in the prevalence of smoking result in variability in the likelihood that children will be exposed to smoking models and offers. In one study of substance use (excluding tobacco), it was found that living in neighborhoods where adolescents are more involved in substance use increases the likelihood that adolescents themselves will become involved, even controlling for parent characteristics (Darling & Steinberg 1997). Residential location is chosen normally by parents and is influenced by numerous family characteristics (see Furstenberg et al. 1999 for in-depth treatment of this topic). In addition, Darling & Steinberg also report that the relationship between substance use among neighborhood peers and individual substance use varied with the extent to which families were integrated into the neighborhood. Adolescents whose families were integrated into their neighborhoods were more vulnerable to the negative influence of high levels of peer substance use. In this study, families had both a direct influence on adolescents’ exposure to substance-using peers through neighborhood selection and, within neighborhood, influenced their adolescents’ vulnerability to neighborhood influences through their social integration.

Family processes influence exposure to risk factors in other ways as well. One process through which parental monitoring, parenting style and parental supportiveness may influence adolescent smoking is by changing the likelihood that adolescents associate with deviant peers (Patterson et al. 1989; Steinberg et al. 1995). In addition to changing the exposure of adolescents to substance-using peers, family characteristics may also increase the likelihood that adolescents are exposed to triggering events such as stressors that may move adolescents more quickly along the trajectory to dependent tobacco use. Childhood exposure to family-related stressors (including marital disruption, divorce, physical, sexual or emotional abuse, growing up with substance-abusing, mentally ill, or incarcerated family members or an abused mother) is related to earlier initiation of smoking, greater likelihood of ever smoking, current smoking status and current smoking level during adolescence and adulthood (Anda et al. 1999). Anda et al. argue that exposure to stressful
events increases the salience of the stress-reduction properties of nicotine, increasing the benefit of tobacco to users during early stages and making it more difficult to quit at later stages. Thus family stressors may both increase adolescents’ exposure to triggering events through impact on the peer group, and also increase adolescents’ vulnerability to triggering events.

Note that each of these three potential classes of processes linking stable family characteristics with change in adolescent smoking is mediated through triggering events, such as exposure to tobacco-using peers. The inter-relationship of these processes can be seen in a study of contextual influences on substance use (Caldwell & Darling 1999). Low parental monitoring and greater amount of time spent in unsupervised peer settings predicted more time spent in settings where it was likely that adolescents would be exposed to substance use (‘party ing’). However, unsupervised time spent with peers was associated with time partying only when the peers with whom adolescents associated thought partying was important. In addition, although time spent partying was associated with higher levels of substance use (excluding tobacco), this was true only for adolescents with low resistance to peer pressure. In other words, the link between low parental monitoring and substance use could be interrupted at several points, both by characteristics of adolescents’ peer groups and by characteristics of the adolescents themselves. This complexity is almost certainly one underlying reason for the weak association observed between stable family processes and changes in adolescent tobacco use.

One final point that is important in thinking about the issue of predicting change in behaviors from stability returns to the issue of age. As several authors have noted, the same parent behaviors may take on different characteristics when the child is at different ages as these behaviors become more or less developmentally appropriate (e.g. Darling & Steinberg 1993; Dishion & McMahon 1998). For example, strict curfews and parental supervision that are developmentally appropriate for a younger child might be met with hostility and rebellion by an adolescent. Poor parental monitoring, which might have had only modest negative effects during middle childhood, may become increasingly problematic as deviant behaviors become more normative and adolescents spend more time in unsupervised settings. In other words, stability in parent behavior, coupled with change in the developing child, may combine to form a triggering event for change. It is exactly this type of lag between changes in parent behavior and child expectations that Collins & Gunnar (1990), Collins & Luebker (1994) and Smetana (1994) credit with the increase in conflict observed in early adolescence.

Similarly, if parents communicate that smoking is an unacceptable behavior for children, the older adolescent may not perceive parent disapproval as applying to them. As adolescents grow older, they increasingly differentiate between their belief that parents have a right to set rules and their belief that they are not obligated to obey parental rules that they do not agree with (Smetana 1994). Although alcohol, drug and tobacco use are defined as ‘prudential’ (i.e. safety-related) issues about which adolescents expect parents to set rules and believe parents have a right to set rules about, they are also the issues on which adolescents are most likely to differentiate between parents’ right to set rules and their own obligation to obey (Nucci et al. 1991). Again, here the change from which a behavioral transition might be predicted is not a characteristic of the parents, which remains constant, but of adolescents’ thinking about the issues involved.

THE NATURE OF THE FAMILY: THE FAMILY AS A COMPLEX SYSTEM

In their 1957 study of the influence of mothers on infant development, Sears, Maccoby & Levin (1957, 1976) summarized the relationships between hundreds of maternal characteristics and dozens of child outcomes. Their main conclusion was that families are complicated systems and that it is impossible to fully disentangle the influence of the many different processes that operate within them. Similar conclusions had been reached by the Child Study Association in 1936 (Greenberger, quoted by Symonds 1939). It is this inherent complexity that has motivated much of the research on parenting style (Darling & Steinberg 1993). Although Sears, Maccoby, and Levin were writing about the influence of mothers on young children, and despite the decades that have passed and the striking advances in statistical modeling, the same conclusions might be drawn about the influence of the family on adolescent smoking.

Multiple processes: the case of style

There are three major difficulties in modeling family influences. First, individuals within families engage in many different exchanges and interactions across a broad range of issues. As was seen in the discussion of social cognitive theory, these exchanges may push the adolescent in contradictory directions, as when having a good relationship with a mother who smokes may predispose an adolescent to look at smoking positively, but make it less likely that he spends time with friends who smoke. Although the influence of different processes may be additive, it is also possible that they will moderate each other—either acting together synergistically or buffering one another. For example, authoritative parenting, a parenting style that combines strictness and warmth, is
associated with lower levels of tobacco use (Baumrind 1991; Radziszewska et al. 1996; Cohen & Rice 1997). Darling & Steinberg (1993) have argued that parenting style might best be thought of as a context that moderates the influence of other parenting behaviors by increasing the effectiveness of those behaviors and by changing adolescents’ openness to socialization. Consistent with this model, Bauman et al. (1984) report that maternal disapproval of smoking is only associated with lower levels of cigarette use when the adolescent is close to the mother (although no moderating effect was found with regard to fathers) and Andrews et al. (1997) report that modeling of parent alcohol and marijuana was highest when adolescents had relatively good relationships with their parents.6

A further complication is that processes within families operate over a long period of time and their influence may differ depending upon the age of the child. For example, several researchers have reported that parents’ former cigarette use is associated with adolescent smoking (Bailey et al. 1993; Bauman et al. 1990; Jackson & Henriksen 1997; Farkas et al. 1999). Farkas et al. (1999) found that parental smoking reduction is most beneficial if it occurs before the child reaches age 9, i.e. before most children encounter frequent cigarette offers. Nonetheless, children whose parents quit when they were relatively young were only one-third less likely to smoke than those whose parents were currently smoking. These results suggest that children absorb messages about tobacco use across their life-time, not just during the period when they are likely to begin to smoke. Thus families are unique in the breadth of areas they touch upon, in the length of time they interact and in the fact that they touch the lives of the children with them at all developmental stages.

Reciprocal processes: the case of monitoring

The second major difficulty posed by the complexity of family systems is that patterns of family interactions and influence develop reciprocally over time and are mutually interdependent. Parental monitoring is a case in point. Effective monitoring of adolescent behavior is associated consistently with lower levels of substance use (see, for example Dishion et al. 1991; Metzler et al. 1994. 1998;

6It should be noted that Bailey et al. (1993) concluded in a study of 6th and 7th graders that parent smoking and family contextual variables (monitoring, time spent with child, disapproval of smoking, family conflict and family disunion) that an additive, rather than interactive, model best fit the data. However, the young age and high functioning of this sample limits its ability to inform this issue in that, as discussed previously, different processes may be involved in taking up smoking at different development stages.

Duncan et al. 1998; Ary et al. 1999a, 1999b; Mott et al. 1999). Although monitoring has often been interpreted as a parenting practice involving active attempts on the part of parents to watch over children as a means of control (for reviews, see Kerr & Stattin 2000; Stattin & Kerr 2000), recent theoretical and empirical work has undermined this interpretation (Dishion & McMahon 1998; Kerr & Stattin 2000; Stattin & Kerr 2000). For example, although parental monitoring predicted a wide range of positive adolescent outcomes, most of this relationship was explained by adolescents’ spontaneous disclosure of information to parents, and not by parents’ attempts to secure information (Kerr & Stattin 2000).

Preliminary results from a newly developing line of research suggests that both adolescents’ decisions about the extent of information they disclose to parents and their motivations for doing so depend upon many factors, including their perception that the issue can be kept successfully from parents, their belief that their parent has a legitimate right to set rules about the behavior in question, and their perception that the issue is important (Darling et al. 2000; Darling 1998, pp. 138, 523; Darling & Koehle 2000, p. 524; Cumsille 2002, p. 1233). Adolescents are more likely to disclose disagreement with parents when they think the issue is important than when they do not, which suggests that most adolescents are interested in maintaining open communication with parents, even when so doing might have negative consequences for themselves.7 This new research suggests that a critical factor in determining both disclosure strategy and motivations appears to be adolescents’ beliefs about the legitimacy of their parents’ authority. Stattin & Kerr interpret non-disclosure as a sign of dysfunction within the family system (Kerr & Stattin 2000; Stattin & Kerr 2000). In contrast, Elkind (1980) suggests that increasing privacy concerns and decisions not to share some kinds of information with parents represent a normative shift in parent–adolescent relationships that is part of the healthy development of autonomy, an interpretation more consistent with literature on strategic communications and interactions (see, for example, Buhrmester & Prager 1995; other chapters in the same volume). It is possible, however, that although normative shifts in

7On average, high school students in this dataset ranked smoking, drinking, and drug use as among the least important to them of 36 potentially conflictual issues (31st, 32nd and 36th, respectively). Smoking had a mean importance score of 2.17, with 1 representing ‘not important’ and 4 ‘important’, although 50 of 121 students rated smoking as either ‘very important’ or ‘important’. Virtually equal numbers of adolescents agreed and disagreed with parents about smoking and agreement with parents did not differentiate between those who reporting smoking was ‘very important’ or ‘important’ to them from those who reported that it was ‘a little’ or ‘not’ important.
Diverse family forms

Finally, the third major difficulty posed by the complexity of family systems is that ‘the’ family is not a singular source of influence, but is usually made up of several different sources, each of whom may influence and be influenced by the developing individual in many different ways. Traditional techniques for modeling multiple sources of influence run into several problems. First, families take many forms. For example, in a study of a small, rural town in upstate New York in which the first author was involved, it was necessary to code 34 different basic categories of family types, including a ‘joint custody’ coding that did not specify who was living in each household in which the child spent significant time. In this category alone we found families in which children were spending time with two now divorced parents in separate homes, a family in which both parents and their new spouses lived with the children of the first marriage in one large home, a family in which the child moved between living with her biological father and a stepmother and her mother and her lesbian partner, etc. More diverse communities expand the number of observed living situations. For example, ‘Woodlawn’, a poor, predominantly African-American neighborhood in Chicago, was described as having more than 80 different family types (Pearson et al. 1990). This diversity poses a challenge for researchers. If current smoking status of mothers, fathers and siblings are coded separately, decisions must be made about how to code adolescents who live only with a mother or only with a father. Is residential status important, or is smoking by non-residential parents important as well? Should adolescents without complete sets of data (i.e. those living in non-intact families) be dropped from the analysis? What of step-parents and other adults living in the home? Sensitivity to the definition of ‘family’ is especially important in understanding social influences on adolescent smoking among immigrant and ethnic minority groups whose kinship networks include larger numbers of kin who may have neither biological nor legal ties to the adolescent (Spencer & Dornbusch 1990). Substantial numbers of adolescents change their residential mobility depending upon opportunities for schooling, recreation and the availability of supervising adults. In a country where more than one-third of children are born to unwed mothers and more than one-quarter of adolescents spend 5 or more years living with a single parent this issue will become increasingly important.

Siblings add additional complexity. First, number, type and residential status of siblings varies even more widely than number, type and residential status of parent figures. Relative age and gender are important considerations in sibling research (Dunn & Plomin 1990). If one collapses sibling smoking information by coding number of smoking siblings, should adolescents who have no siblings, an only sibling who is still a toddler and three older, non-smoking siblings all be coded in the same way? Obviously, the answers to these questions should vary depending upon theory-driven hypotheses about developmental processes. To date, many of the analyses have been simplistic, only rarely examining the differential impact of mothers and fathers on their same and cross-gender offspring. Research on sibling smoking could benefit especially from careful, theory-driven research, in that it is both complicated and appears to have powerful effects on adolescent smoking status (Avenevoli & Merikangas 2003).

The standard method of modeling multiple family influences is to use techniques such as multiple regression, entering mother, father and sibling smoking as separate variables that are independent of one another statistically. Potential moderating effects are modeled as statistical interactions using multiplicative terms. Several problems with this standard practice are worth
discussing, however. These problems are usually classed under the categories of co-linearity and power. If we assume that the smoking behaviors of family members are associated with adolescent smoking (this is the reason for testing the model, after all), we have to assume that smoking behaviors of other family members are correlated as well. This problem of co-linearity makes it difficult to disentangle the separate influence of each variable (i.e. it reduces the power of the tests associated with each individual variable) and makes differences in variability an important determinant of the results of the analyses. For example, take the case where mother and father smoking are more highly correlated with one another than they are with sibling smoking. When mother, father and sibling smoking are entered into a regression equation simultaneously, co-linearity may eliminate the independent effects of mother and father smoking as individual variables even though, treated as a block, these variables may still predict adolescent smoking. In addition, parent smoking probably has a very different distribution than does sibling smoking. If most adults either smoke regularly or do not smoke at all, but adolescents exhibit a wider range of smoking patterns (experimenting, smoking regularly, etc.), then the variability of sibling smoking will be much greater than the variability in parent smoking. This would enhance the power of sibling smoking as a predictor. In this situation, modeling interactions between variables may be particularly problematic, not only because the predictors are not independent, but also because the distribution of the component variables will not approximate normal, exacerbating the problem of outliers (Wilcox 1997).

Traditional techniques for modeling family influence: the example of sibling smoking

Although the co-linearity issue inherent to modeling family processes is a methodological problem, it has a strong conceptual component as well. If we believe that family smoking-related behaviors are interrelated, does it make sense to examine the influence of sibling smoking on target adolescent smoking, for example, but control for the effect of parents? Several researchers have reported that when parent and sibling smoking are entered into a regression equation simultaneously, the parent effect is diminished (Avenevoli & Merikangas 2003). Normally, this would be interpreted as a mediational effect: the association between parent characteristics and adolescent outcome is caused by the parents’ effect on the sibling which, in turn, influences the target adolescent directly. This is consistent with empirical research suggesting that adolescents sometimes begin smoking in response to offers by older siblings (Presti et al. 1992). Logically, however, this explanation lacks substance. One cannot posit that parents influence one sibling directly, but the other only indirectly.

A second model consistent with this pattern of findings is that both siblings are influenced by a third (unmeasured) process that influences both of their smoking behaviors. In this model, parent behavior is associated with adolescent smoking only because it is correlated with this third factor: i.e. parent behavior can be treated as a confound. For example, if the family lives in a neighborhood that has been targeted heavily by cigarette advertising aimed at children, one can imagine that parent smoking behaviors might be correlated with amount of neighborhood advertising, but both siblings might be more strongly influenced by the advertising because they were part of the targeted population. Once sibling smoking behavior is controlled for, the parent effect would drop out of the model but the sibling variable would not because it captured the advertising effect. In other words, predicting the behavior of one sibling from that of another taps the shared environment experienced by the dyad.

A third model consistent with a measured sibling variable diminishing the relationship between a measured parent variable and adolescent smoking is similar, but builds upon the idea that parent behavior is much more complex than measured parent variables. Measured sibling smoking has the potential to capture all of the processes operating in the family that would influence smoking. These are, presumably, the same processes affecting the target adolescent. If parental smoking were the measured parent variable, its effect on the target adolescent, as well as all other unmeasured characteristics of the family, neighborhood, school and shared environment that influence smoking, would be captured in the measure of sibling smoking. When sibling smoking was controlled, the relationship between parent smoking and adolescent smoking would be diminished.

Within and between family differences

A better strategy for modeling family influences on smoking is to acknowledge the nested structure of the data and use analytical methods that take this structure into account. Such methods can be modeled using structural equation models or through specialized programs such as PROC MIXED (SAS) or HLM (hierarchical linear modeling) (Bryk & Raudenbush 1992). Taking a simple case, data could be collected on smoking status of two
adolescent siblings and two parent predictors in a sample of families. In this example, adolescent smoking could be predicted by the parent predictors, sibling characteristics (smoking status, for example), and individual characteristics (age and birth order, for example). In a standard HLM analysis, the first step would be to estimate the intraclass correlation between sibling smoking. This is an estimate of the amount of variance in the smoking outcome that can be attributed to being a member of a particular family (i.e. the similarity of siblings on smoking). In the second step of the analysis, predictors would be used to predict both between-family and within-family variance. This latter distinction between between-family and within-family models is critical. Parent smoking is common to both siblings but differs between families, and can be used to predict between-family differences in adolescent smoking. Within-family differences would be predicted by the differential experiences of the two siblings. For example, in a family in which one sibling smokes and the other does not, having a smoking sibling differentiates between the experiences of the two siblings. Note that in these two models, the parameter of the relationship between shared family characteristic such as parent smoking and adolescent smoking is estimated between families, but the parameter of the relationship between non-shared family characteristics such as sibling smoking is estimated within-families.

Models that use two siblings from the same family to estimate sibling influence have several advantages over standard techniques. One is the differentiation of between- and within-family parameter estimates. By modeling sibling effects within families, common sources of between family variance are removed from the sibling estimate. In addition, individual differences in sibling characteristics can be used to further specify the model—for example, age. This is particularly important in trying to understand sibling influences. Most researchers interested in sibling influence on tobacco use have estimated current tobacco use status. However, because exposure to contexts in which smoking is likely to be initiated is often age-graded, the age differences between siblings becomes problematic. For example, would having a 16-year-old sibling who began smoking at 15 better predict the smoking status of a 13-year-old, the age at which the 13-year-old would make the transition to smoking or the trajectory of smoking? In other words, adolescents' developmental trajectories might be more similar than their statuses at different ages. In addition, it may be that having an older sibling already smoking may speed the younger sibling along their own trajectory. Within-family growth curve analysis, in which sibling trajectories are compared with one another, may be the most promising method of understanding sibling influences (for a discussion of such models in the context of modeling reciprocal influences in marital dyads, see Maguire 1999). Differential influence of family characteristics on siblings with different characteristics can be modeled as well. Rose et al. (1999) used HLM to model family and peer influences on adolescent smoking using a sample of sibling dyads and found strong between-family effects. Unfortunately, sibling influence was not modeled. This paper was particularly interesting, in that it noted strong shared environmental effects within the family (both in that the intraclass correlation between siblings was high and the effects of parent smoking were relatively powerful), as well as strong non-shared environmental influences from peers.

Contexts, communities and niches

An alternative way of conceptualizing the family as a context for adolescent smoking is to take the word ‘context’ literally, rather than simply using it as a synonym for the word ‘influence’. Person–context interaction and ecological systems theories (Bronfenbrenner & Morris 1998; Magnusson & Stattin 1998) both emphasize the interrelated nature of the processes and characteristics of naturally occurring systems, such as families, and the potential for distorting our understanding of how these systems work when we ignore their systemic nature. One way of respecting the systemic properties of families is to apply an ecological or community systems approach to its study. In the biological science of ecology, the concept of community is used to describe a set of interrelated species that co-occur commonly (Wilson & Bossert 1971). For example, a high desert supports a community that is quite different from a bog community. Although the individual species found in each community type vary in different parts of the world, species occupying a community share common characteristics due to the processes underlying community formation. Species in communities co-occur because they share overlapping niches. A niche, in this technical sense of the word, is the set of environmental conditions necessary for species survival (Wilson & Bossert 1971). For example, temperature range, rainfall, sunlight exposure and soil pH are characteristics that help to differentiate niches and thus separate species into different plant communities. Species within communities share a suite of correlated features due to the selection and adaptation processes that operate in their shared environmental conditions. Although different community types vary across the environmental features that define them (soil pH, for example, differentiates high desert and bog environments), it is important to note that the differences between bog and high desert communities are not captured along those single dimensions.

Applying this kind of community systems perspective to the family provides an alternative strategy for studying
adolescent tobacco use and opens several lines of investigation not explored previously. For example, this model suggests that particular constellations of interrelated characteristics arise in response to particular ecological processes (Ricklefs 1976). Cataloging and describing community types leads to greater understanding of the prevalence and operation of etiological processes. Applied to adolescent tobacco use, this suggests that the within-family patterning of tobacco use and a careful study of the conditions under which particular patterns arise may prove helpful in gaining insight into how tobacco use begins and is maintained. For example, if families in which only fathers smoke and both parents smoke are common, but it is less common to find families in which only the mother smokes, what are the processes underlying this ‘hole’ in the distribution? How common is it for the adolescents in a family to smoke when neither parent does and under what conditions does this pattern occur? Although data collected to answer questions about the predictors of individual smoking can be analyzed in such a way as to answer these questions, framing questions from a community systems perspective that focuses on the patterning of features changes the emphasis and generates a different set of hypotheses (see Magnusson & Stattin 1998 for a discussion of this point).

Grouping families according to patterning and predicting group membership also implies very different methodological approaches than individually centered techniques. Focusing on individuals in particular roles (e.g. oldest child) within an ecological community framework embeds the child in a particular constellation of processes. Because typological analyses capture a great deal of information about environmental conditions through the classification, they increase the power of the analyses markedly. For example, Darling & Koehle (2000) presented an unpublished analysis of 516 sibling dyads who were a subset of a diverse sample of students from six high schools (see Steinberg et al. 1994 for a full description of the complete sample and measures). Sibling dyads were classified according to the similarity of their peer groups and their perception of parental monitoring. Darling & Koehle examined the relationship of parental monitoring, sibling substance use (excluding tobacco), and peer substance use with adolescent substance use. Based on hypotheses about buffering processes, they predicted that parental monitoring would be most powerful and peer substance use least powerful as predictors in the condition where siblings experienced similar levels of parental monitoring, but had quite different types of peers. Their hypotheses were confirmed. A more traditional, non-system-based analysis would have required testing these hypotheses using two three-way interaction terms: a daunting task. Two things about this example are important. The first is the issue of power. Complex interactions require large samples to model adequately. The second is that dyads were classified, not according to the patterning of their values on monitoring and peer substance use, but on the confluence of influences operating within the family. In other words, families were not grouped according to whether they had high or low monitoring and on whether peers were high or low on substance use. The study’s major hypotheses concerned the way that parent, sibling and peer processes operated when family, sibling and peer processes were all working together, compared to how they operated when family and peer influences were working at cross-purposes. Because of this, dyads were grouped according to the confluence or disjunction of influences (maintaining the full range of variance in each group). Using this strategy, direct comparison of the relationship between variables across dyad types yields information on the full range of adolescent outcomes in very different circumstances. Other hypotheses might lead to different systemic properties becoming more important in determining group membership.

Systemic approaches may be especially useful when examining longitudinal data. For example, comparing the smoking trajectories of adolescents who have similar characteristics but who are embedded within different family types yields information about the influence of multiple factors (including moderating effects) with only limited loss of power.

The changing nature of adolescent social relationships and the previous discussion of processes linking stable family characteristics with changes in smoking behavior both highlight the importance of examining the interface between family processes and processes operating in other contexts. For example, how do peer processes influence adolescent smoking trajectories in families that differ in parent smoking? One approach to modeling moderating effects is using multiplicative interaction terms in standard regression models. However, this method has limitations, many of which have already been discussed. Returning to the analogy of the plant communities, a drought will have a very different effect on a high desert community than on a bog community. These differences are captured to only a limited extent by examining the statistical interaction of observed and average rainfall. In a small sample, they would probably not be captured in tests of the interaction of observed rainfall and soil pH at all. This example illustrates two related points. First, and most broadly, the ability of an interaction term to capture
differences in process depends upon the ability to measure the processes accurately. In this particular example, soil pH can be measured quite accurately, but measuring rainfall is problematic in both settings. The infrequent torrential rains typical of high deserts can overwhelm measuring instruments, while measurement of rainfall in bogs does not capture well constant, low-level precipitation and dew, and may not reflect deposition of watershed drainage that results from distant rainfall. Although measurement error is always problematic, poor measurement is especially problematic in modeling interactions, where error is compounded and deviations from normality can have strong and unexpected effects on the results (Wilcox 1997). Secondly, the differences between the high desert and bog communities are not captured well by any single dimension along which they vary. Despite this limitation, average rainfall probably captures the differences between the environments better in this situation, because it is more strongly tied to the process of interest: drought. In situations characterized by highly correlated features, such as families, single indicators may best be thought of as marker variables: i.e. variables that do not measure the construct of interest, but rather are standing in as proxies for them. In this situation, the more highly correlated the marker variable is with the latent, unmeasured construct, the more successful it will be in capturing those differences in an interaction term.

Structural equation models are designed to capture latent processes more fully and have the additional advantage of enabling modeling of error terms. Unfortunately, most current applications are limited in that they do not lend themselves to testing interactions between linear measures. Because the most important effects of families on adolescent smoking may be specifically in their ability to moderate the influence of other contexts, this limits SEM models’ applicability to studying family influences in this domain. One promising strategy may be to combine the typological approach discussed in the previous section with an SEM approach to modeling process. For example, one might classify families according to a patterning of potential processes. Comparison of SEM models of non-familial processes across family types would test hypotheses about the differential influence of non-familial processes on adolescent smoking in different family contexts.

CONCLUSION

The goal of this paper was to discuss how the nature of adolescent smoking, the nature of the family and the nature of the family during adolescence present serious conceptual and methodological challenges to researchers interested in studying the family as a context for the development of adolescent smoking. First, although the study of smoking during adolescence is fundamentally the study of change, smoking is often predicted from relatively stable family characteristics, such as demographics, parent smoking status or relationship quality. Focusing on adolescent smoking ‘status’ rather than on trajectories introduces considerable error into models of family process. In addition, it is likely that the influence of families on smoking trajectories is indirect, through changing adolescents’ exposure and vulnerability to triggering events. Greater sensitivity to the transitional nature of adolescent smoking may help to bring this sometimes contradictory literature into clearer focus. Secondly, the complexity of the family system, including multiple simultaneous processes, the reciprocal nature of processes and the diversity of family forms makes it imperative that research be grounded theoretically. Approaches that recognize the nested nature of family data or take a typological/community systems approach to modeling family influences offer several advantages over more commonly employed statistical techniques in capturing this complexity. These techniques also offer promise in modeling the interface of family processes with processes operating in other social contexts. Because adolescents spend increasing time outside the family, the connections between the family and the larger social world may be a critical area of research.

Although the many excellent prospective studies currently in the literature provide a wealth of data about the correlates of adolescent tobacco use, our understanding of the developmental processes underlying the initiation of tobacco use remains limited. One factor contributing to this problem may be disciplinary, stemming from interest in predicting risk. Although traditional statistical techniques provide excellent means of identifying risk factors that increase the likelihood of the development of a particular behavior (smoking, for example), they are more limited in modeling developmental processes in complex, interrelated systems. These limitations become especially apparent when many questions of major theoretical interest center around how the functioning of these complex systems varies in different circumstances as well as across time. Several less traditional approaches to modeling adolescent smoking trajectories, including growth curve analyses, use of techniques that take the nested nature of within-family processes into account, typological approaches, and the combination of these techniques were discussed. Stronger links between the sophisticated theoretical discussions in the growing literature on adolescents tobacco use trajectories with the methodological techniques used to test and model those processes will move the field toward a clearer understanding of developmental processes.
REFERENCES

Darling, N. & Koehle, L. (2000) Variation in developmental process as a function of siblings’ consensus on parental monitoring and peer group characteristics. Poster Presented at the

© 2003 Society for the Study of Addiction to Alcohol and Other Drugs

Addiction, 98 (Suppl 1), 21–36