Example of an $\epsilon - \delta$ Proof

Section 2.3, Exercise 38

We want to prove that $\lim_{x \to 3} 3x - 7 = 2$. Just like in class, we will first have a “work” section to decide what δ needs to be and then we will write our proof.

Work:

Start with $|f(x) - L| < \epsilon$. Remember that we are trying to work toward something that looks like $|x - x_0| < \delta$, or equivalently, $-\delta < x - x_0 < \delta$. In this problem, $x_0 = 3$. Remember that there are a couple different ways to get δ. You can use whichever way you like, so long as there’s no illegal math involved. On trickier problems, one method may work better than another. Until you get a feel for which way you should go, you should start with the method you are most comfortable with. If you get stuck, try a different method. I will show you 2 different (although equivalent in this case) ways to find δ for this problem.

Method 1

\[
|f(x) - L| < \epsilon \\
|(3x - 7) - 2| < \epsilon \\
|3x - 9| < \epsilon \\
|3(x - 3)| < \epsilon \\
3|(x - 3)| < \epsilon \\
|(x - 3)| < \frac{\epsilon}{3}
\]

This looks like $|x - 3| < \delta$. So, we decide to let $\delta = \frac{\epsilon}{3}$.

Method 2

\[
|f(x) - L| < \epsilon \\
|(3x - 7) - 2| < \epsilon \\
-\epsilon < (3x - 7) - 2 < \epsilon \\
-\epsilon < 3x - 9 < \epsilon \\
9 - \epsilon < 3x < 9 + \epsilon \\
\frac{9 - \epsilon}{3} < x < \frac{9 + \epsilon}{3} \\
3 - \frac{\epsilon}{3} < x < 3 + \frac{\epsilon}{3} \\
-\frac{\epsilon}{3} < x - 3 < \frac{\epsilon}{3}
\]

This looks like $-\delta < x - x_0 < \delta$. So, we see that we should pick $\delta = \frac{\epsilon}{3}$.

Now that we have our δ, we can begin our proof.
Proof:

Let $\epsilon > 0$. Let $\delta = \frac{\epsilon}{3}$. For all x such that $0 < |x - 3| < \delta$, the following is true.

\[
|f(x) - L| = |(3x - 7) - 2| \\
= |3x - 9| \\
= |3(x - 3)| \\
= 3|x - 3| \\
< 3\delta \\
= 3\left(\frac{\epsilon}{3}\right) \\
= \epsilon
\]

By the definition of a limit, since $|f(x) - L| < \epsilon$ whenever $0 < |x - 3| < \delta$, we see that the limit of $f(x) = 3x - 7$ as x goes to 3 is 2. Thus, $\lim_{x \to 3} 3x - 7 = 2$.

2