Bounds on the number of inference functions of a graphical model

Sergi Elizalde* and Kevin Woods†

November 13, 2005

Abstract

Directed graphical models, also called Bayesian networks, are important statistical tools in a wide variety of fields, ranging from computational biology to probabilistic artificial intelligence. We give an upper bound on the number of inference functions of any directed graphical model. This bound is polynomial on the size of the model, for a fixed number of parameters, thus improving the exponential upper bound given by Pachter and Sturmfels [8]. We also show that our bound is tight up to a constant factor, by constructing a family of hidden Markov models whose number of inference functions agrees asymptotically with the upper bound. Finally, we apply this bound to a model for sequence alignment that is used in computational biology.

*Department of Mathematics, Dartmouth College, Hanover, NH 03755. sergi.elizalde@dartmouth.edu
†Department of Mathematics, University of California, Berkeley, CA 94720. kwoods@math.berkeley.edu
1 Introduction

Many statistical models seek, given a set of observed data, to find the hidden (unobserved) data which best explains these observations. In this paper we consider graphical models, also called Bayesian networks, a broad class that includes many useful models, such as hidden Markov models (HMMs), pair hidden Markov models, and hidden tree models (background on graphical models will be given in Section 2.1). These graphical models relate the hidden and observed data probabilistically, and a natural problem is to determine, given a particular observation, what is the most likely hidden data (which is called the explanation). These models rely on parameters that are the probabilities relating the hidden and observed data. Any fixed values of the parameters determine a way to assign an explanation to each possible observation. This gives us a map, called an inference function, from observations to explanations.

An example of an inference function is the popular “Did you mean” feature from google, which could be implemented as a hidden Markov model, where the observed data is what we type into the computer, and the hidden data is what we were meaning to type. Graphical models are frequently used in these sorts of probabilistic approaches to artificial intelligence (see [5] for an introduction).

Inference functions for graphical models are also important in computational biology [6, Section 1.5]. For example, consider the gene-finding functions, which were discussed in [7, Section 5]. These inference functions (corresponding to a particular HMM) are used to identify gene structures in DNA sequences. An observation in such a model is a sequence of nucleotides in the alphabet \(\Sigma' = \{A, C, G, T\}\), and an explanation is a sequence of 1’s and 0’s which indicate whether the particular nucleotide is in a gene or is not. We seek to use the information in the observed data (which we can find via DNA sequencing) to decide on the hidden information of which nucleotides are part of genes (which is hard to figure out directly). Another class of examples is that of sequence alignment models [6, Section 2.2]. In such models, an inference function is a map from a pair of DNA sequences to an optimal alignment of those sequences. If we change the parameters of the model, which alignments are optimal may change, and so the inference functions may change.

A surprising conclusion of this paper is that there cannot be too many different inference functions, though the parameters may vary continuously over all possible choices. For example, in the homogeneous binary HMM of length 5 (see Section 2.1 for some definitions; they are not important at the moment), the observed data is a binary sequence of length 5, and the explanation will also be a binary sequence of length 5. At first glance, there are

\[32^{32} = 1 461 501 637 330 902 918 203 684 832 716 283 019 655 932 542 976\]

possible maps from observed sequences to explanations. In fact, Christophe Weibel has computed that only 5266 of these possible maps are actually inference functions [9].

Different inference functions represent different criteria to decide what is the most likely explanation for each observation. A bound on the number of inference functions is important because it indicates how badly a model may respond to changes in the parameter values (which are generally known with very little certainty and only guessed at). Also, the polynomial bound given in Section 3 suggests that it might be feasible to precompute all the inference functions of a given graphical model, which would yield an efficient way to provide an explanation for each given observation.

This paper is structured as follows. In Section 2 we introduce some preliminaries about graphical models and inference functions, as well as some facts about polytopes. In Section 3 we present our main result. We call it the Few Inference Functions Theorem, and it states that in any graphical model the number of inference functions grows polynomially in the size of the model (if the number of parameters is fixed). In Section 4 we prove that our upper bound on the number of inference functions of a graphical model is sharp, up to a constant factor, by constructing a family of HMMs.
whose number of inference functions asymptotically matches the bound. In Section 5 we show that
the bound is also asymptotically tight on a model for sequence alignment which is actually used in
computational biology. In particular, this bound will be quadratic on the length of the input DNA
sequences. We conclude with a few remarks and possible directions for further research.

2 Preliminaries

2.1 Graphical models

A statistical model is a family of joint probability distributions for a collection of discrete random
variables \(Z = (Z_1, \ldots, Z_m) \), where each \(Z_i \) takes on values in some finite state space \(\Sigma_i \). Here we
will focus on directed graphical models. A directed graphical model (or Bayesian network) is a finite
directed acyclic graph \(G \) where each vertex \(v_i \) corresponds to a random variable \(Z_i \). Each vertex
\(v_i \) also has an associated probability map

\[
p_i : \left(\prod_{j: v_j \text{ a parent of } v_i} \Sigma_j \right) \rightarrow [0, 1]^{\left| \Sigma_i \right|}.
\]

Given the states of each \(Z_j \) such that \(v_j \) is a parent of \(v_i \), the probability that \(v_i \) has a given state
is independent of the values of all other vertices that are not descendants of \(v_i \), and this map \(p_i \)
gives that probability. In particular, we have the equality

\[
\text{Prob}(Z = \tau) = \prod_i \text{Prob}(Z_i = \tau_i, \text{ given that } Z_j = \tau_j \text{ for all parents } v_j \text{ of } v_i) = \prod_i [p_i(\tau_{j_1}, \ldots, \tau_{j_k})]_{\tau_i},
\]

where \(v_{j_1}, \ldots, v_{j_k} \) are the parents of \(v_i \). Sources in the digraph (which have no parents) are generally
given the uniform probability distribution on their states, though more general distributions are
possible. See [6, Section 1.5] for general background on graphical models.

Example 1. The hidden Markov model (HMM) is a model with random variables \(X = (X_1, \ldots, X_n) \)
and \(Y = (Y_1, \ldots, Y_n) \). Edges go from \(X_i \) to \(X_{i+1} \) and from \(X_i \) to \(Y_i \).

![Figure 1: The graph of an HMM for \(n = 3 \).]

Generally, each \(X_i \) has the same state space \(\Sigma \) and each \(Y_i \) has the same state space \(\Sigma' \). An
HMM is called homogeneous if the \(p_{X_i} \), for \(1 \leq i \leq n \) are identical and the \(p_{Y_i} \) are also identical.
In this case, the \(p_{X_i} \) each correspond to the same \(|\Sigma| \times |\Sigma| \) matrix \(T = (t_{ij}) \) (the transition matrix)
and the \(p_{Y_i} \) each correspond to the same \(|\Sigma| \times |\Sigma'| \) matrix \(S = (s_{ij}) \) (the emission matrix).

In the example, we have partitioned the variables into two sets. In general graphical models,
we also have two kinds of variables: observed variables \(Y = (Y_1, Y_2, \ldots, Y_n) \) and hidden variables
\(X = (X_1, X_2, \ldots, X_q) \). Generally, the observed variables are exactly the sinks of the directed graph,
but this does not need to be the case. To simplify the notation, we make the assumption, which
is often the case in practice, that all the observed variables take their values in the same finite
alphabet \(\Sigma' \), and that all the hidden variables are on the finite alphabet \(\Sigma \).
Notice that for given Σ and Σ' the homogeneous HMMs in this example depend only on a fixed set of parameters, t_{ij} and s_{ij}, even as n gets large. These are the sorts of models we are interested in. Let the number of parameters be a fixed integer d. We will name our parameters $\theta_1, \theta_2, \ldots, \theta_d$. By a graphical model with d parameters, we mean a graphical model such that each probability $[p_i(\tau_{j_1}, \ldots, \tau_{j_k})]_{ij}$ is a monomial in our parameters, and furthermore the degree of this monomial is bounded by the number of parents of v_i. For example, in the homogeneous HMM, each v_i has only one parent, and the coordinates of p_i are degree one monomials (one of t_{ij} or s_{ij}). This bound on degrees encompasses most interesting and useful graphical models. For example, if a vertex v_i of a graphical model has 2 parents, and the parents affect the probability of state v_i independently, then we would expect each coordinate of p_i to be a quadratic monomial $\theta_j \theta_k$ for some j and k.

In what follows we denote by E the number of edges of the underlying graph of a graphical model, by n the number of observed random variables, and by q the number of hidden random variables. The observations, then, are sequences in $(\Sigma')^n$ and the explanations are sequences in Σ'. Let $l = |\Sigma|$ and $l' = |\Sigma'|$.

For each observation τ and hidden variables h, $\text{Prob}(X = h, Y = \tau)$ is a monomial $f_{h,\tau}$ of degree at most E in the parameters $\theta_1, \theta_2, \ldots, \theta_d$. Then for each observation $\tau \in (\Sigma')^n$, the observed probability $\text{Prob}(Y = \tau)$ is the sum over all hidden data h of $\text{Prob}(X = h, Y = \tau)$, and so $\text{Prob}(Y = \tau)$ is the polynomial $f_\tau = \sum_h f_{h,\tau}$ in the parameters $\theta_1, \theta_2, \ldots, \theta_d$. The degree of f_τ is at most E.

Note that we have not assumed that the appropriate probabilities sum to 1. It turns out that the analysis is much easier if we do not place that restriction on our probabilities. At the end of the analysis, these restrictions may be added if desired (there are many models in use, however, which never place that restriction; these can no longer be properly called “probabilistic” models, but in fact belong to a more general class of “scoring” models which our analysis encompasses).

2.2 Inference functions

For fixed values of the parameters, the basic inference problem is to determine, for each given observation τ, the value $h \in \Sigma'$ of the hidden data that maximizes $\text{Prob}(X = h \mid Y = \tau)$. A solution to this optimization problem is denoted \hat{h} and is called an explanation of the observation τ. Each choice of parameter values $(\theta_1, \theta_2, \ldots, \theta_d)$ defines an inference function $\tau \mapsto \hat{h}$ from the set of observations $(\Sigma')^n$ to the set of explanations Σ'.

It is possible that there is more than one value of \hat{h} attaining the maximum of $\text{Prob}(X = h \mid Y = \tau)$. In this case, for simplicity, we will pick only one such explanation, according to some consistent tie-breaking rule decided ahead of time. For example, we can pick the least such \hat{h} in some given total order of the set Σ' of hidden states. Another alternative would be to define inference functions as maps from $(\Sigma')^n$ to subsets of Σ'. This would not affect the results of this paper, so for the sake of simplicity, we consider only inference functions as defined above.

It is interesting to observe that the total number of maps $(\Sigma')^n \rightarrow \Sigma'$ is $(l^n)^{(l')}^{n} = l^{q(l')}^n$, which is doubly-exponential in the length n of the observations. However, most of these maps are not inference functions for any values of the parameters. Before our results, the best upper bound in the literature was an exponential bound given in [8, Corollary 10]. In Section 3 we give a polynomial upper bound on the number of inference functions of a graphical model.

2.3 Polytopes

Here we review some facts about convex polytopes, and we introduce some notation. Recall that a polytope is a bounded intersection of finitely many closed halfspaces, or equivalently, the convex hull of a finite set of points. For the basic definitions about polytopes we refer the reader to [10].
Given a polynomial \(f(\theta) = \sum_{i=1}^{N} \theta_1^{a_{1,i}} \theta_2^{a_{2,i}} \cdots \theta_d^{a_{d,i}} \), its **Newton polytope**, denoted by \(\text{NP}(f) \), is defined as the convex hull in \(\mathbb{R}^d \) of the set of points \(\{(a_{1,i}, a_{2,i}, \ldots, a_{d,i}) : i = 1, \ldots, N\} \). For example, if \(f(\theta_1, \theta_2) = 2\theta_1^3 + 3\theta_1^2\theta_2 + \theta_1\theta_2^2 + 3\theta_1 + 5\theta_2^4 \), then its Newton polytope \(\text{NP}(f) \) is drawn on the left of Figure 2.

Given a polytope \(P \subset \mathbb{R}^d \) and a vector \(w \in \mathbb{R}^d \), the set of all points in \(P \) at which the linear functional \(x \mapsto x \cdot w \) attains its maximum determines a **face** of \(P \). It is denoted

\[
\text{face}_w(P) = \{ x \in P : x \cdot w \geq y \cdot w \text{ for all } y \in P \}.
\]

Faces of dimension 0 (consisting of a single point) are called **vertices**, and faces of dimension 1 are called **edges**. If \(d \) is the dimension of the polytope, then faces of dimension \(d - 1 \) are called **facets**.

Let \(P \) be a polytope and \(F \) a face of \(P \). The **normal cone** of \(P \) at \(F \) is

\[
N_P(F) = \{ w \in \mathbb{R}^d : \text{face}_w(P) = F \}.
\]

The collection of all cones \(N_P(F) \) as \(F \) runs over all faces of \(P \) is denoted \(\mathcal{N}(P) \) and is called the **normal fan** of \(P \). Thus the normal fan \(\mathcal{N}(P) \) is a partition of \(\mathbb{R}^d \) into cones. The cones in \(\mathcal{N}(P) \) are in bijection with the faces of \(P \), and if \(w \in N_P(F) \) then the linear functional \(x \cdot w \) is maximized on \(F \). Figure 2 shows the normal fan of a polytope.

![Figure 2: The Newton polytope of \(f(\theta_1, \theta_2) = 2\theta_1^3 + 3\theta_1^2\theta_2 + \theta_1\theta_2^2 + 3\theta_1 + 5\theta_2^4 \) and its normal fan.](image)

The **Minkowski sum** of two polytopes \(P \) and \(P' \) is defined as \(P + P' := \{ x + x' : x \in P, x' \in P' \} \).

The **common refinement** of two or more normal fans is the collection of cones obtained as the intersection of a cone from each of the individual fans. For polytopes \(P_1, P_2, \ldots, P_k \), the common refinement of their normal fans is denoted \(\mathcal{N}(P_1) \land \cdots \land \mathcal{N}(P_k) \). The following lemma states the well-known fact that the normal fan of a Minkowski sum of polytopes is the common refinement of their individual fans (see [10, Proposition 7.12] or [2, Lemma 2.1.5]):

Lemma 2. \(\mathcal{N}(P_1 + \cdots + P_k) = \mathcal{N}(P_1) \land \cdots \land \mathcal{N}(P_k) \).

We finish with a result of Gritzmann and Sturmfels that will be useful later. It gives a bound on the number of vertices of a Minkowski sum of polytopes.

Theorem 3 ([2]). Let \(P_1, P_2, \ldots, P_k \) be polytopes in \(\mathbb{R}^d \), and let \(m \) denote the number of non-parallel edges of \(P_1, \ldots, P_k \). Then the number of vertices of \(P_1 + \cdots + P_k \) is at most

\[
2 \sum_{j=0}^{d-1} \binom{m-1}{j}.
\]

Note that this bound is independent of the number \(k \) of polytopes.
3 An upper bound on the number of inference functions

For fixed parameters, the inference problem of finding the explanation \(\hat{h} \) that maximizes \(\text{Prob}(X = h \mid Y = \tau) \) is equivalent to identifying the monomial \(f_{h,\tau} = \phi^{a_1,h}_1 \phi^{a_2,h}_2 \cdots \phi^{a_d,h}_d \) of \(f_\tau \) with maximum value. Since the logarithm is a monotonically increasing function, the desired monomial also maximizes the quantity

\[
\log(\phi^{a_1,h}_1 \phi^{a_2,h}_2 \cdots \phi^{a_d,h}_d) = a_1 \log(\theta_1) + a_2 \log(\theta_2) + \cdots + a_d \log(\theta_d) = a_1 h_1 + a_2 h_2 + \cdots + a_d h_d,
\]

where we replace \(\log(\theta_i) \) with \(v_i \). This is equivalent to the fact that the corresponding point \((a_1, h, a_2, h, \ldots, a_d, h)\) maximizes the linear expression \(v_1 x_1 + \cdots + v_d x_d \) on the Newton polytope \(\text{NP}(f_\tau) \). Thus, the inference problem for fixed parameters becomes a linear programming problem.

Each choice of the parameters \(\theta = (\theta_1, \theta_2, \ldots, \theta_d) \) determines an inference function. If \(v = (v_1, v_2, \ldots, v_d) \) is the vector in \(\mathbb{R}^d \) with coordinates \(v_i = \log(\theta_i) \), then we denote the corresponding inference function by \(\Phi_v : (\Sigma')^n \rightarrow \Sigma^d \). For each observation \(\tau \in (\Sigma')^n \), its explanation \(\Phi_v(\tau) \) is given by the vertex of \(\text{NP}(f_\tau) \) that is maximal in the direction of the vector \(v \). Note that for certain values of the parameters (if \(v \) is perpendicular to a positive-dimensional face of \(\text{NP}(f_\tau) \)) there may be more than one vertex attaining the maximum. It is also possible that a single point \((a_1, h, a_2, h, \ldots, a_d, h)\) in the polytope corresponds to several different values of the hidden data. In both cases, we pick the explanation according to the tie-breaking rule determined ahead of time. This simplification does not affect the asymptotic number of inference functions.

Different values of \(\theta \) yield different directions \(v \), which can result in distinct inference functions. We are interested in bounding the number of different inference functions that a graphical model can have. The next theorem gives an upper bound which is polynomial in the size of the graphical model. In fact, very few of the \(t^{d(l')} \) functions \((\Sigma')^n \rightarrow \Sigma^d \) are inference functions.

Theorem 4 (The Few Inference Functions Theorem). Let \(d \) be a fixed positive integer. Consider a graphical model with \(d \) parameters, and let \(E \) be the number of edges of the underlying graph. Then, the number of inference functions of the model is at most \(O(E^{d(d-1)}) \).

Before proving this theorem, observe that the number \(E \) of edges depends on the number \(n \) of observed random variables. In most graphical models of interest, \(E \) is a linear function of \(n \), so the bound becomes \(O(n^{d(d-1)}) \). For example, the hidden Markov model has \(E = 2n - 1 \) edges. The only property of the number \(E \) that we actually need in the proof is that it is a bound on the degrees of the monomials \(f_{h,\tau} \).

Proof. In the first part of the proof we will reduce the problem of counting inference functions to the enumeration of the vertices of a certain polytope. We have seen that an inference function is specified by a choice of the parameters, which is equivalent to choosing a vector \(v \in \mathbb{R}^d \). The function is denoted \(\Phi_v : (\Sigma')^n \rightarrow \Sigma^d \), and the explanation \(\Phi_v(\tau) \) of a given observation \(\tau \) is determined by the vertex of \(\text{NP}(f_\tau) \) that is maximal in the direction of \(v \). Thus, cones of the normal fan \(\mathcal{N}(\text{NP}(f_\tau)) \) correspond to sets of vectors \(v \) that give rise to the same explanation for the observation \(\tau \). Non-maximal cones (i.e., those contained in another cone of higher dimension) correspond to directions \(v \) for which more than one vertex is maximal. Since ties are broken using a consistent rule, we disregard this case for simplicity. Thus, in what follows we consider only maximal cones of the normal fan.

Let \(v' = (v'_1, v'_2, \ldots, v'_d) \) be another vector corresponding to a different choice of parameters (see Figure 3). By the above reasoning, \(\Phi_v(\tau) = \Phi_{v'}(\tau) \) if and only if \(v \) and \(v' \) belong to the same cone of \(\mathcal{N}(\text{NP}(f_\tau)) \). Thus, \(\Phi_v \) and \(\Phi_{v'} \) are the same inference function if and only if \(v \) and
As we need is Theorem 3. In our case we have a sum of polytopes NP(∑ τ∈(Σ′)^n N(NP(f_τ))). Then, Φ_τ and Φ_τ′ are the same inference function exactly when v and v′ lie in the same cone of this common refinement. This implies that the number of inference functions equals the number of cones in ∩ τ∈(Σ′)^n N(NP(f_τ)). By Lemma 2, this common refinement is the normal fan of NP(f) = ∑ τ∈(Σ′)^n NP(f_τ), the Minkowski sum of the polytopes NP(f_τ) for all observations τ. It follows that enumerating inference functions is equivalent to counting vertices of NP(f). In the remaining part of the proof we give an upper bound on the number of vertices of NP(f).

Note that for each τ, the polytope NP(f_τ) is contained in the hypercube [0, E]^d, since each parameter θ_i can appear as a factor of a monomial of f_τ at most E times. Also, the vertices of NP(f_τ) have integral coordinates, because they are exponent vectors. Polytopes whose vertices have integral coordinates are called lattice polytopes. It follows that the edges of NP(f_τ) are given by vectors where each coordinate is an integer between −E and E. There are only (2E + 1)^d such vectors, so this is an upper bound on the number of different directions that the edges of the polytopes NP(f_τ) can have.

This property of the Newton polytopes of the coordinates of the model will allow us to give an upper bound on the number of vertices of their Minkowski sum NP(f). The last ingredient that we need is Theorem 3. In our case we have a sum of polytopes NP(f_τ), one for each observation τ ∈ (Σ′)^n, having at most (2E + 1)^d non-parallel edges in total. Hence, by Theorem 3, the number of vertices of NP(f) is at most

2 \sum_{j=0}^{d-1} \binom{(2E + 1)^d - 1}{j}.

As E goes to infinity, the dominant term of this expression is

\frac{2^{d^2 - d + 1}}{(d - 1)!} E^{d(d-1)}.

Thus, we get an O(E^{d(d-1)}) upper bound on the number of inference functions of the graphical model.

In the next section we show that the bound given in Theorem 4 is tight up to a constant factor.
4 A lower bound

As before, we fix d, the number of parameters in our model. The Few Inference Functions Theorem (Theorem 4) tells us that the number of inference functions is bounded from above by some function $cE^{d(d-1)}$, where c is a constant (depending only on d) and E is the number of edges in the graphical model. Here we show that this bound is tight up to a constant, by constructing a family of graphical models whose number of inference functions is at least $\tilde{c}E^{d(d-1)}$, where \tilde{c} is another constant. In fact, we will construct a family of hidden Markov models with this property. To be precise, we have the following theorem.

Theorem 5. Fix d. There is a constant $c' = c'(d)$ such that, given $n \in \mathbb{Z}_+$, there exists an HMM of length n, with d parameters, $2d + 2$ hidden states, and 2 observed states, such that there are at least $c'n^{d(d-1)}$ distinct inference functions. (For HMMs, $E = 2n - 1$, so this also gives us the lower bound in terms of E).

In the proof of this theorem, we will state several lemmas that must be used. We omit the proofs of some of them here due to lack of space. Given n, we first construct the appropriate HMM, M_n, using the following lemma.

Lemma 6. Given $n \in \mathbb{Z}_+$, there is an HMM, M_n, of length n, with d parameters, $2d + 2$ hidden states, and 2 observed states, such that for any $a = (a_1, \ldots, a_n) \in \mathbb{Z}_+^d$ with $\sum_i a_i < n$, there is an observed sequence which has one explanation if $a_1 \log(\theta_1) + \cdots + a_d \log(\theta_d) > 0$ and another explanation if $a_1 \log(\theta_1) + \cdots + a_d \log(\theta_d) < 0$.

Proof. Given d and n, define a length n HMM with parameters $\theta_1, \ldots, \theta_d$, as follows. The observed states will be S and C (for “start of block,” and “continuing block,” respectively). The hidden states will be $s_i, s'_i, c_i,$ and $c'_i,$ for $1 \leq i \leq d + 1$ (think of s_i and s'_i as “start of the ith block” and c_i and c'_i as “continuing the ith block”).

Here’s the idea of what we want this HMM to do: if the observed sequence has S’s in position 1, $a_1 + 1$, $a_1 + a_2 + 1$, ..., and $a_1 + \cdots + a_d + 1$ and C’s elsewhere, then there will be only two possibilities for the sequence of hidden states, either

$$t = s_1 c_1 \cdots c_d s_2 c_2 \cdots c_d \cdots s_d c_d s_{d+1} c_{d+1} \cdots c_{n-1} a_1-1 \cdots a_d-1$$

or

$$t' = s'_1 c'_1 \cdots c'_d s'_2 c'_2 \cdots c'_d \cdots s'_d c'_d s'_{d+1} c'_{d+1} \cdots c'_{n-1} a_1-1 \cdots a_d-1$$

We will also make sure that t has a priori probability $\theta_1^{a_1} \cdots \theta_d^{a_d}$ and t' has a priori probability 1. Then t is the explanation if $a_1 \log(\theta_1) + \cdots + a_d \log(\theta_d) > 0$ and t' is the explanation if $a_1 \log(\theta_1) + \cdots + a_d \log(\theta_d) < 0$. Remember that we are not constraining our probability sums to be 1. A very similar HMM could be constructed that obeys that constraint, if desired. But to simplify notation it will be more convenient to treat the transition probabilities as parameters that do not necessarily sum to one at each vertex, even if this forces us to use the term “probability” somewhat loosely.

Here is how we set up the transitions/ emissions. Let s_i and s'_i, for $1 \leq i \leq d + 1$, all emit S with probability 1 and C with probability 0. Let c_i and c'_i emit C with probability 1 and S with probability 0. Let s_i, for $1 \leq i \leq d$, transition to c_i with probability θ_i and transition to everything else with probability 0. Let s_{d+1} transition to c_{d+1} with probability 1 and to everything else with probability 0. Let s'_i, for $1 \leq i \leq d + 1$, transition to c'_i with probability 1 and to everything else with probability 0. Let c_i, for $1 \leq i \leq d$, transition to c_i with probability θ_i, to s_{i+1} with probability
There are space into inference cones includes all of the hyperplanes that we want it to: given the correct observed sequence, t and t' are the only explanations, with the correct probabilities.

This means that, for the HMM provided by this lemma, the decomposition of (log-)parameter space into inference cones includes all of the hyperplanes $\{ x : \langle a, x \rangle = 0 \}$ such that $a \in \mathbb{Z}_+^d$ with $\sum_i a_i < n$. Call the arrangement of these hyperplanes \mathcal{H}_n. It suffices to show that the arrangement \mathcal{H}_n consists of at least c_1n^d chambers (full dimensional cones determined by the arrangement). There are c_1n^d ways to choose one of the hyperplanes from \mathcal{H}_n, for some constant c_1. Therefore there are $c_1^d n^{d(d-1)}$ ways to choose $d-1$ of the hyperplanes; their intersection is, in general, a 1-dimensional face of \mathcal{H}_n (that is, the intersection is a ray which is an extreme ray for the cones it is contained in). It is quite possible that two different ways of choosing $d-1$ hyperplanes give the same extreme ray. The following lemma says that some constant fraction of these choices of extreme rays are actually distinct.

Lemma 7. Fix d. Given n, let \mathcal{H}_n be the hyperplane arrangement consisting of the hyperplanes of the form $\{ x : \langle a, x \rangle = 0 \}$ with $a \in \mathbb{Z}_+^d$ and $\sum_i a_i < n$. Then the number of 1-dimensional faces of \mathcal{H}_n is $c_2n^{d(d-1)}$, for some constant c_2.

Each chamber will have a number of these extreme rays on its boundary. The following lemma gives a constant bound on this number.

Lemma 8. Fix d. Given n, define \mathcal{H}_n as above. Each chamber of \mathcal{H}_n has at most $2^{d(d-1)}$ extreme rays.

Conversely, each ray is an extreme ray for at least 1 chamber. Therefore there are at least $\frac{c_2}{2^{d(d-1)}}n^{d(d-1)}$ chambers, and Theorem 5 is proved.

5 Inference functions for sequence alignment

In this section we give an application of Theorem 4 to a basic model for sequence alignment. Sequence alignment is used to determine the similarity between biological sequences that have evolved from a common ancestor via a series of mutations, insertions and deletions. What the best alignment of two given sequences is depends on the choice of a scoring scheme. Efficient parametric sequence alignment algorithms are known (see for example [6, Chapter 7]). Here we are concerned with the different inference functions that can arise when the parameters vary. For a detailed treatment on the subject of sequence alignment, we refer the reader to [3].

Given two strings σ^1 and σ^2 of lengths n_1 and n_2 respectively, an alignment is a pair of equal length strings (μ^1, μ^2) obtained from σ^1, σ^2 by inserting dashes “−” in such a way that there is no position in which both μ^1 and μ^2 have a dash. A match is a position where μ^1 and μ^2 have the same character, a mismatch is a position where μ^1 and μ^2 have different characters, and a space is a position in which one of μ^1 and μ^2 has a dash. A simple scoring scheme consists of two parameters α and β denoting mismatch and space penalties respectively. The reward of a match is set to 1. The score of an alignment with z matches, x mismatches, and y spaces is then $z - x\alpha - y\beta$. Observe that these numbers always satisfy $2z + 2x + y = n_1 + n_2$.

\[\theta_i, \text{ and to everything else with probability 0. Let } c_{d+1} \text{ transition to } c_{d+1} \text{ with probability 1, and to everything else with probability 0. Let } c'_i, \text{ for } 1 \leq i \leq d \text{ transition to } c'_i \text{ with probability 1, to } s_{i+1} \text{ with probability 1, and to everything else with probability 0. Let } c'_{d+1} \text{ transition to } c'_{d+1} \text{ with probability 1 and to everything else with probability 0.} \]
This model for sequence alignment is a particular case of a so-called pair hidden Markov model. The problem of determining the highest scoring alignment for given values of \(\alpha \) and \(\beta \) is equivalent to the inference problem in the pair hidden Markov model. In this setting, an observation is a pair of sequences \(\tau = (\sigma^1, \sigma^2) \), and the number of observed variables is \(n = n_1 + n_2 \). The values of the hidden variables in an explanation indicate the positions of the spaces in the optimal alignment. We will refer to this as the 2-parameter model for sequence alignment.

For each pair of sequences \(\tau \), the Newton polytope of the polynomial \(f_\tau \) is the convex hull of the points \((x, y, z)\) whose coordinates are the number of mismatches, spaces, and matches, respectively, of each possible alignment of the pair. This polytope is only two dimensional, as it lies on the plane \(2z + 2x + y = n_1 + n_2 \). No information is lost by considering its projection onto the \(xy \)-plane instead. This projection is just the convex hull of the points \((x, y)\) giving the number of mismatches and spaces of each alignment. For any alignment of sequences of lengths \(n_1 \) and \(n_2 \), the corresponding point \((x, y)\) lies inside the square \([0, n]^2\), where \(n = n_1 + n_2 \). Therefore, since we are dealing with lattice polygons inside \([0, n]^2\), it follows from the proof of the Few Inference Functions Theorem (Theorem 4) that the number of inference functions of this model is \(O(n^{2(2-1)}) = O(n^2) \). Next we show that this quadratic bound is tight, even in the case of the binary alphabet.

Proposition 9. Consider the 2-parameter model for sequence alignment for two observed sequences of length \(n \) and let \(\Sigma' = \{0, 1\} \) be the binary alphabet. Then, the number of inference functions of this model is \(\Theta(n^2) \).

Proof. The above argument shows that \(O(n^2) \) is an upper bound on the number of inference functions of the model. To prove the proposition, we will argue that there are at least \(\Omega(n^2) \) such functions.

Since the two sequences have the same length, the number of spaces in any alignment is even. For convenience, we define \(y' = y/2 \) and \(\beta' = 2\beta \), and we will work with the coordinates \((x, y', z)\) and the parameters \(\alpha \) and \(\beta' \). The value \(y' \) is called the number of insertions (half the number of spaces), and \(\beta' \) is the insertion penalty. For fixed values of \(\alpha \) and \(\beta' \), the explanation of an observation \(\tau = (\sigma^1, \sigma^2) \) is given by the vertex of \(\text{NP}(f_\tau) \) that is maximal in the direction of the vector \((-\alpha, -\beta', 1)\). In this model, \(\text{NP}(f_\tau) \) is the convex hull of the points \((x, y', z)\) whose coordinates are the number of mismatches, insertions and matches of the alignments of \(\sigma^1 \) and \(\sigma^2 \).

The argument in the proof of Theorem 4 shows that the number of inference functions of this model is the number of cones in the common refinement of the normal fans of \(\text{NP}(f_\tau) \), where \(\tau \) runs over all pairs of sequences of length \(n \) in the alphabet \(\Sigma' \). Since the polytopes \(\text{NP}(f_\tau) \) lie on the plane \(x + y' + z = n \), it is equivalent to consider the normal fans of their projections onto the \(y'z \)-plane. These projections are lattice polygons contained in the square \([0, n]^2\). We denote by \(P_\tau \) the projection of \(\text{NP}(f_\tau) \) onto the \(y'z \)-plane.

We will construct, for any relatively prime positive integers \(u \) and \(v \) with \(u < v \) and \(6v - 2u \leq n \), a polygon \(P_\tau \) of binary sequences of length \(n \) such that \(P_\tau \) has an edge of slope \(u/v \). Such an edge gives rise to the line \(u \cdot \alpha + v \cdot \beta' = 0 \) separating regions in the normal fan \(N(P_\tau) \) and hence in \(\Lambda_\alpha N(P_\tau) \), where \(\tau \) ranges over all pairs of binary sequences of length \(n \). The number of such choices \((u, v) \in \mathbb{Z}^2 \) have \(u \) and \(v \) relatively prime. This implies that the number of different inference functions is \(\Omega(n^2) \).

Thus, it only remains to construct such \(\tau \), given positive integers \(u \) and \(v \) as above. Let \(a := 2v, b := v - u \). Assume first that \(n = 6v - 2u = 2a + 2b \). Consider the sequences \(\sigma^1 = 0^a1^b0^a, \sigma^2 = 1^b0^a1^b \), where \(0^a \) indicates that the symbol 0 is repeated \(a \) times. Let \(\tau = (\sigma^1, \sigma^2) \). Then, it is not hard to see that the polygon \(P_\tau \) for this pair of sequences has four vertices: \(v_0 = (0, 0), v_1 = (b, 3b), v_2 = (a + b, a + b) \) and \(v_3 = (n, 0) \). The slope of the edge between \(v_1 \) and \(v_2 \) is \(\frac{a - 2b}{a} = \frac{u}{v} \).
If \(n > 6v - 2u = 2a + 2b \), we just append \(0^{n-2a-2b} \) to both sequences \(\sigma^1 \) and \(\sigma^2 \). In this case, the vertices of \(P_\tau \) are \((0, n - 2a - 2b), (b, n - 2a + b), (a + b, n - a - b), (n, 0) \) and \((n - 2a - 2b, 0)\).

![Alignment Graph and Polygon](image)

Figure 4: A pair of binary sequences of length 18 giving the slope 3/7 in their alignment polytope. The four paths in the alignment graph on the left correspond to the four vertices; a right step in the graph corresponds to a space in \(\sigma^1 \), a down step to a space in \(\sigma^2 \), and a diagonal step to a match or mismatch. See [6, Section 2.2] for a full definition of the alignment graph.

Note that if \(v - u \) is even, the construction can be done with sequences of length \(n = 3v - u \) by taking \(a := v, b := \frac{v-u}{2} \). Figure 4 shows the alignment graph and the polygon \(P_\tau \) for \(a = 7, b = 2 \).

In most cases, one is interested only in those inference functions that are biologically meaningful. This corresponds to parameter values with \(\alpha, \beta \geq 0 \), which means that mismatches and spaces are penalized instead of rewarded. Sometimes one also requires that \(\alpha \leq \beta \), which means that a mismatch should be penalized less than two spaces. It is interesting to observe that our construction in the proof of Proposition 9 not only shows that the total number of inference functions is \(\Omega(n^2) \), but also that the number of biologically meaningful ones is still \(\Omega(n^2) \). This is because the different rays created in our construction have a biologically meaningful direction in the parameter space.

6 Final remarks

An interpretation of Theorem 4 is that the ability to change the values of the parameters of a graphical model does not give as much freedom as it may appear. There is a very large number of possible ways to assign an explanation to each observation. However, only a tiny proportion of these come from a consistent method for choosing the most probable explanation for a certain choice of parameters. Even though the parameters can vary continuously, the number of different inference functions that can be obtained is at most polynomial in the number of edges of the model, assuming that the number of parameters is fixed.

Having shown that the number of inference functions of a graphical model is polynomial in the size of the model, an interesting next step would be to find an efficient way to precompute all the inference functions for given models. This would allow us to give the answer (the explanation) to a query (an observation) very quickly. Theorem 4 suggests that it might be computationally feasible to precompute the polytope \(\text{NP}(f) \), whose vertices correspond to the inference functions. However, the difficulty arises when we try to describe a particular inference function efficiently. The problem is that the characterization of an inference function involves an exponential number of observations.
References

