Cubing the Pyramid:
or
Why We Need Calculus

Kevin Woods
Believe not everything, but only what is proven: the former is foolish, the latter the act of a sensible man.
The volume of a pyramid is

\[
\frac{1}{3} \times \text{area of base} \times \text{height}.
\]
The area of a 1×1 square
The area of a 1×1 square is 1 square unit, by definition.
The area of a 1×2 rectangle
Rectangles

The area of a 1×2 rectangle

is $1 + 1 = 2$.
Rectangles

The area of a $1 \times \frac{2}{3}$ rectangle
Rectangles

The area of a $1 \times \frac{2}{3}$ rectangle is $\frac{1}{3} \cdot 2 = \frac{2}{3}$.

The area of a $1 \times A$ rectangle is A.
More Rectangles

Claim: Any rectangle can be cut and the pieces rearranged so that it is a $1 \times A$ rectangle, for some A.
More Rectangles

First: Cut and rearrange so that the height is between 1 and 2.
Too tall:
More Rectangles

First: Cut and rearrange so that the height is between 1 and 2.

Too tall:

[Diagram of two rectangles, one blue and one red, demonstrating the height issue.]
More Rectangles

First: Cut and rearrange so that the height is between 1 and 2.
Too tall:
More Rectangles

Too short:
More Rectangles

Too short:
More Rectangles

Too short:
More Rectangles

Rectangle with height between 1 and 2.
More Rectangles

Rectangle with height between 1 and 2.
More Rectangles

Rectangle with height between 1 and 2.
Claim: Any triangle can be cut and rearranged into a $1 \times A$ rectangle, for some A.
Claim: Any triangle can be cut and rearranged into a $1 \times A$ rectangle, for some A.

\[\text{Diagram:} \quad \text{Triangle} \rightarrow \text{1 x A rectangle} \]
Claim: Any triangle can be cut and rearranged into a $1 \times A$ rectangle, for some A.

\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{triangle_rearrangement.png}
\caption{Diagram showing how a triangle can be rearranged into a rectangle.}
\end{figure}
Claim: Any polygon can be cut and rearranged into a $1 \times A$ rectangle, for some A.
Polygons

Claim: Any polygon can be cut and rearranged into a $1 \times A$ rectangle, for some A.
Claim: Any polygon can be cut and rearranged into a $1 \times A$ rectangle, for some A.
Claim: A polygon can be cut and rearranged into any other polygon of the same area.
Claim: A polygon can be cut and rearranged into any other polygon of the same area.
Polygons

Claim: A polygon can be cut and rearranged into any other polygon of the same area.
Claim: A polygon can be cut and rearranged into any other polygon of the same area.
Polygons

Area is invariant under cutting and rearranging.

And it is the only invariant for polygons.

Finding areas of polygons is fundamentally discrete.
Cubing the pyramid?

Hilbert: Can a regular tetrahedron be cut and rearranged to be a cube?
Cubing the pyramid?

Hilbert: Can a regular tetrahedron be cut and rearranged to be a cube?

Dehn: No.

How to prove?
The Dehn Invariant

We need another invariant.

For each edge of a polyhedron, we measure its length.

We also measure the angle the two adjoining faces make with each other.
The Dehn Invariant

We need another invariant.

For each edge of a polyhedron, we measure its length.

We also measure the angle the two adjoining faces make with each other.

Weirdness 1: We add angles mod 180 degrees (e.g., $225 = 45$).
Weirdness 2: For a given edge with length ℓ and angle θ, we look at

$$\ell \otimes \theta.$$

Properties

- $a \otimes b_1 + a \otimes b_2 = a \otimes (b_1 + b_2)$
- $a_1 \otimes b + a_2 \otimes b = (a_1 + a_2) \otimes b$
The Dehn Invariant

Weirdness 2: For a given edge with length ℓ and angle θ, we look at

$$\ell \otimes \theta.$$

Properties

- $a \otimes b_1 + a \otimes b_2 = a \otimes (b_1 + b_2)$
- $a_1 \otimes b + a_2 \otimes b = (a_1 + a_2) \otimes b$

$$a \otimes 0 + a \otimes 0 = a \otimes (0 + 0) = a \otimes 0$$

so

$$a \otimes 0 = 0.$$
The Dehn Invariant: Sum $\ell \otimes \theta$ over all edges of the polyhedron.

Dehn Invariant of $\ell \times \ell \times \ell$ cube

\[
\underbrace{\ell \otimes 90 + \cdots + \ell \otimes 90}_{12} = \ell \otimes 12 \cdot 90
\]

\[
= \ell \otimes 0
\]

\[
= 0
\]
The Dehn Invariant: Sum $\ell \otimes \theta$ over all edges of the polyhedron.

Dehn Invariant of $\ell \times \ell \times \ell$ cube

\[
\ell \otimes 90 + \cdots + \ell \otimes 90 = \ell \otimes 12 \cdot 90
\]

\[
= \ell \otimes 0
\]

\[
= 0
\]

Dehn Invariant of tetrahedron with edge length s

\[
s \otimes 70.529 + \cdots + s \otimes 70.529 = s \otimes 6 \cdot 70.529
\]

\[
= s \otimes 63.173
\]
The Dehn Invariant

Claim: The Dehn Invariant is invariant under cutting (and rearranging).
The Dehn Invariant

Claim: The Dehn Invariant is invariant under cutting (and rearranging).
The Dehn Invariant

Claim: The Dehn Invariant is invariant under cutting (and rearranging).

\[\ell_1 \otimes \theta + \ell_2 \otimes \theta = (\ell_1 + \ell_2) \otimes \theta = \ell \otimes \theta. \]

\[s \otimes \psi + s \otimes (180 - \psi) = s \otimes 180 = 0. \]
Therefore, we cannot chop up and rearrange the tetrahedron into an easier shape in order to find its volume.

We need calculus.
Democritus: Two pyramids with congruent bases and the same heights have the same volume.
Democritus: Two pyramids with congruent bases and the same heights have the same volume.
Democritus: Two pyramids with congruent bases and the same heights have the same volume.

Three pyramids of equal volume can be joined to form a triangular prism.
Beyond

Slyder: Volume and Dehn Invariant are the *only* invariants in 3d.

Open: What about higher dimensions?
Beyond

Slyder: Volume and Dehn Invariant are the only invariants in 3d.

Open: What about higher dimensions?

Laczkovich, 1990 If we’re allowed crazy cuts, we can cut a circle of area 1 into 9 pieces, rearrange the pieces, and get a square of area 1.
Beyond

Slyder: Volume and Dehn Invariant are the *only* invariants in 3d.

Open: What about higher dimensions?

Laczkovich, 1990 If we’re allowed crazy cuts, we can cut a circle of area 1 into 9 pieces, rearrange the pieces, and get a square of area 1.

Banach-Tarski If we’re allowed crazy cuts, we can cut a sphere of volume 1 into a finite number of pieces, rearrange the pieces, and get a sphere of volume $1,000,000,000,000,000$.