PHYS-212 Lab Assignment #1

Taylor problem 3.23

In an experiment on conservation of angular momentum, a student needs to find the angular momentum \(L \) of a uniform disc of mass \(M \) and radius \(R \) as it rotates with angular velocity \(\omega \). She makes the following measurements:

\[
M = (1.10 \pm 0.01) \text{kg} \\
R = (0.250 \pm 0.005) \text{m} \\
\omega = (21.5 \pm 0.4) \text{rad/s}
\]

and then calculates \(L \) as \(L = \frac{1}{2} MR^2 \omega \). (The factor \(\frac{1}{2} MR^2 \) is just the moment of inertia of the uniform disc.) What is her answer for \(L \) with its uncertainty? (Consider the three original uncertainties independent and remember that fractional uncertainty in \(R^2 \) is twice that in \(R \).)

Solution:

The calculated quantity \(L \) is the product of three factors, \(M \), \(R^2 \), and \(\omega \). The easiest approach then is to focus on the relative or fractional uncertainty in \(L \). We know from differential calculus that

\[
\frac{\delta L}{L} \approx \frac{\delta M}{M} + 2 \frac{\delta R}{R} + \frac{\delta \omega}{\omega}.
\]

These fractional errors are simply given by

\[
\frac{\delta M}{M} = \frac{0.01}{1.10} \approx 1\% \\
\frac{\delta R}{R} = \frac{0.005}{0.250} \approx 2\% \\
\frac{\delta \omega}{\omega} = \frac{0.4}{21.5} \approx 2\%
\]

Since the uncertainties are assumed to be independent, we actually add them in quadrature, or

\[
\frac{\delta L}{L} \approx \sqrt{\left(\frac{\delta M}{M}\right)^2 + 2\left(\frac{\delta R}{R}\right)^2 + \left(\frac{\delta \omega}{\omega}\right)^2}
\]

\[
\frac{\delta L}{L} \approx \sqrt{(1\%)^2 + 2(2\%)^2 + (2\%)^2} \approx 4\%
\]

Hence there is about a 4\% uncertainty in \(L \), mostly due to the uncertainty in \(R \).

Thus \(L = \frac{1}{2} MR^2 \omega = \frac{1}{2}(1.10)(0.250)^2 (21.5) = 0.739 \text{kg} \cdot \text{m}^2/\text{s} \) with an uncertainty of 4\% or 0.03.

To reflect significant figures we write this as

\[
L = (0.74 \pm 0.03) \text{kg} \cdot \text{m}^2/\text{s}
\]