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Assignment #7

PHYS-410
Fall 2013
Mr. Scofield

Announcements

Reading

Begin reading Chapter 7 of the textbook. In treating systems of N, indistinguishable
particles we have, until now, failed to account for their intrinsic spin. Recall that
fermions obey the Pauli Exclusion Principle while bosons do not. This has profound
impact on the ground state of an N-particle system. We now take up this issue to develop
the Fermi-Dirac and Bose-Einstein distribution functions. To do this we must first
consider systems for which the number of particles N is allowed to vary. This leads us to
the grand-canonical ensemble, the Gibbs factor, and the grand partition function.

With these new mathematical tools developed we apply them to some important systems:
an ideal fermi gas (e.g., conduction electrons in a metal), blackbody radiation, and the
Debye model for the heat capacity of a solid.

Important formulas:

Gibbs Factor: e #E«#Ne)

Grand partition function: g=>" e /&)
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F-D distribution: f (&)=

B-E distribution: b(e)=

Homework Problems (from Schroeder, unless otherwise specified)
Your solutions to the problems below are due at the beginning of class, Friday, Nov. 8.

1.01  Show that the Fermi-Dirac function f (&) has the symmetry f (u+5)=1-f(u—5).

Thus, the probability that a single particle energy level an amount  above the chemical potential
is occupied is equal to the probability that a level an amount 6 below the chemical potential is
vacant.
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1.02

Problem 7.11. For a system of fermions at room temperature, compute the
probability of a single-particle state being oceupied if its energy is

{a) 1eV less than p

(b) 0.01 eV less than u
(¢) equal to u

(d) 0.01 eV greater than g
(@) 1 eV greater than p

7.03 Problem 7.19 (but for potassium instead of copper)

Problem 7.19. Fach atom in a chunk of copper contributes one conduction
electron. Look up the density and atomic mass of copper, and calculate the Fermi
energy, the Fermi temperature, the degeneracy pressure, and the contribution of
the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low
to treat this system as a degenerate electron gas?

Problem 7.22. Consider a degenerate electron gas in which essentially all of the
electrons are highly relativistic (¢ 3> mc?), so that their energies are € = pe (where
p is the magnitude of the momentum vector).
(a) Modify the derivation given above to show that for a relativistic electron
gas at zero temperature, the chemical potential (or Fermi energy) is given
by = he(3N/87V)V/3,

(b) Find a formula for the total energy of this system in terms of N and p.

Problem 7.26. In this problem you will model helium-3 as a noninteracting
Fermi gas. Although *He liquefies at low temperatures, the liquid has an unusually
low density and behaves in many ways like a gas because the forces between the
atoms are so weak. Helium-3 atorns are spin-1/2 fermions, because of the unpaired
neutron in the nucleus.

(a) Pretending that liquid “He is a noninteracting Fermi gas, calculate the

satculate the heat capacity for T < T, and compare to the experimenta

b) Calculate the heat ity for T < Tg d P h peri 1
result Cyy = (2.8 K™)NET (in the low-temperature limit). {Don’t expect
perfect agreement.)

(¢) The entropy of solid *He below 1 K is almost entirely due to its multiplicity
of nuclear spin alignments. Sketch a graph S vs. T for liguid and solid *He
at low temperature, and estimate the temperature at which the liguid and
solid have the same entropy. Discuss the shape of the solid-liguid phase
boundary shown in Figure 5.13.
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Figure 5.13. Phase disgrams of *He (left) and *He (right). Neither diagram is
to scale, but qualitative relations between the diagrams are shown correctly. Not
shown are the three different solid pbases [crystal structures) of each isotope, or
the superfluid phases of 3He below 3 m¥.

1.06 Problem 7.28. Consider a free Fermi gas in two dimensions, confined to a square
area A = L?,

(a)
(b)
(©)
(d)

(e)

Find the Fermi energy (in terms of N and A), and show that the average
energy of the particles is e /2.

Derive a formula for the density of states. You should find that it is a
constant, independent of e.

Explain how the chemical potential of this system should behave as a fune-
tion of temperature, both when kT' < ep and when T is much higher.
Because g(e) is a constant for this system, it is possible to carry out the
integral 7.53 for the number of particles analytically. Do so, and solve for
jt as a function of N. Show that the resulting formula has the expected
qualitative behavior,

Show that in the high-temperature limit, £7" 3 cp. the chemical potential
of this system is the same as that of an ordinary ideal gas.

Page 3 of 3



