
Rolling motion of non-axisymmetric cylinders
Antonino Carnevalia 

Department of Physical Sciences, Morehead State University, UPO 715, Morehead, Kentucky 40351-1689

Russell Mayb 

Department of Mathematics and Computer Science, Morehead State University,
UPO Box 701, Morehead, Kentucky 40351-1689

!Received 12 November 2004; accepted 4 July 2005"
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I. INTRODUCTION

The “Great Soup Can Race” is frequently used as a chal-
lenge for high school science teams participating in Science
Olympiads and as an illustration of the application of basic
physics principles. Students are given various materials to
build a cylindrical can that will win the race to the bottom of
a ramp. In general, the lesson is intended to be that the sys-
tem acquiring less rotational energy will have greater trans-
lational energy and will therefore win the race. Accordingly,
the underlying assumption is that the smaller the moment of
inertia—for a given mass added to the can—the faster the
can. Although this conclusion is correct for symmetric sys-
tems, it is incorrect in general. A non-axisymmetric distribu-
tion of the additional mass changes the initial potential en-
ergy and the torque distribution and, under proper conditions,
produces the fastest system. Additionally, the motion of non-
axisymmetric cylinders is varied and interesting to view, and
the corresponding theory is solvable for the case of rotation
without slipping. Thus, this system would make an excellent
project for undergraduate students who have had Lagrangian
mechanics.

II. ANALYSIS

The soup can is a hollow cylinder of radii R1 and R2 and
mass m !see Fig. 1 for the definition of the other quantities".
For rolling without slipping, we have

x = R2!! − !0" . !1"

The added mass is a rod of radius r and mass M, parallel to
the axis of the hollow cylinder, and located at a distance R
from its axis. The center of mass of the system with respect
to this axis is at

Rc.m. =
MR

m + M
. !2"

We can use Lagrange’s equations1,2 to determine the equa-
tion for the linear acceleration of the system down the ramp.
The potential energy is

U = !m + M"ghc.m. = !m + M"g#!L − x"sin!""

+ R2 cos!"" − Rc.m. cos!" + !"$ , !3"

and the kinetic energy is3

T = Tc.m. + T!, !4"

where Tc.m. is the kinetic energy of the total mass moving
with the velocity of the center of mass and T! is the kinetic
energy of the individual components relative to the center of
mass. Thus,

Tc.m. = 1
2 !m + M"!ẋc.m.

2 + ẏc.m.
2 "

= 1
2 !m + M"#ẋ2 + Rc.m.

2 !̇2 − 2Rc.m. cos!!"ẋ!̇$ , !5"

and

T! = Tcyl! + TM! . !6"

The two parts of T! are

Tcyl! = 1
2 I!̇2, !7"

where the moment of inertia I is about the axis passing
through the center of mass of the system. Thus,

I = I0 + mRc.m.
2 , !8"

where I0 is the moment of inertia of the cylinder about its
own axis. Hence

Tcyl! =
m

2
%R1

2 + R2
2

2
+ Rc.m.

2 &!̇2, !9"

and

TM! = Trev! + Tspin! !10a"

=
1
2

!Irevolution + Ispin"!̇2 !10b"

=
M

2
%!R − Rc.m."2 +

r2

2
&!̇2. !10c"

If we substitute Eqs. !2", !9", and !10c" into Eq. !6" and
simplify, we obtain

T! =
1
2
%m'R1

2 + R2
2

2
( + #R2 +

Mr2

2
&!̇2, !11"

where the reduced mass is

# =
mM

m + M
. !12"

The total kinetic energy of the system is therefore
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T =
1
2

!m + M"#ẋ2 + Rc.m.
2 !̇2 − 2Rc.m.cos!!"ẋ!̇$

+
1
2
%m'R1

2 + R2
2

2
( + #R2 +

Mr2

2
&!̇2. !13"

The same result is obtained by starting from T=Tcyl+TM
instead of T=Tc.m.+T!. The Lagrangian of the system is

L =
1
2

!m + M"!ẋ2 + Rc.m.
2 !̇2 − 2Rc.m.cos!!"ẋ!̇"

+
1
2
%m'R1

2 + R2
2

2
( + #R2 +

Mr2

2
&!̇2

− !m + M"g#!L − x"sin!""

+ R2 cos!"" − RCM cos!" + !"$ . !14"

The Lagrangian can easily be changed from L!x ,! , ẋ , !̇" to
L!x , ẋ" using Eq. !1":

L =
ẋ2

2R2
2%!m + M"R2

2 + MR2 − 2MRR2 cos'!0 +
x

R2
(

+
m

2
!R1

2 + R2
2" +

Mr2

2
& + !m + M"g%x sin!""

+ Rc.m. cos'" + !0 +
x

R2
(& + constant. !15"

Finally, Lagrange’s equation yields the linear acceleration of
the system down the ramp

ẍ =
!m + M"gR2

2 sin!"" − MgRR2 sin!" + !" − MR sin!!"ẋ2

MR2 + !m + M"R2
2 + m

2 !R1
2 + R2

2" + Mr2

2 − 2MRR2 cos!!"
.

!16"

We have chosen to solve Eq. !16" in terms of ẋ and ẍ,
instead of !̇ and !̈, because our measurements give ẋ!t". As
a check, Eq. !16" reduces to the simple analytical results4 for
symmetric cases, that is, for M =0 or for R=0, including the
case r=R1, that is, a solid cylinder. In general, Eq. !16" is

nonlinear, so the motion can only be computed numerically.
For the general, non-axisymmetric case, we used a fourth-
order Runge-Kutta algorithm to compute the motion of the
cylinder by converting Eq. !16" to a pair of first-order equa-
tions, ẋ=v and v̇=g!x ,v" where g is the right-hand side of
Eq. !16" with ! replaced by x /R2+!0 and ẋ replaced by v.

III. MOTION DOWN THE RAMP

With !0 appropriately large !)200° " and M located as far
as possible from the axis, it is easy to test experimentally that
the non-axisymmetric cylinder wins the race. Figure 2 shows
the results for three configurations: an empty cylinder, a cyl-
inder with additional mass M on its axis, and a cylinder with
M placed at its edge. Not shown in Fig. 2 is the general result
that the symmetric cylinder !with M on the axis" will even-
tually win the race if the ramp is long enough due to the fact
that the rotational energy keeps increasing, whereas the ad-
ditional initial potential energy of the non-axisymmetric cyl-
inder is constant.

To compare the predictions of the simulation with data
collected with a motion detector, we plotted the translational
velocity rather than the distance, because the variations in
the former are more dramatic and a better visual test of the
theory. We used two simple systems. One is a short PVC
pipe with a large bolt and nut used as the eccentric mass M,
with M )m. The other is an empty, large coffee can, with
both ends removed, and a 1 kg rod used as the eccentric
mass, so that M $m. Elastic bands on the outer rims were
used to prevent slipping. The largest experimental uncertain-
ties were the frictional losses, which were not systematically
measured, but included in an ad hoc manner in the model as
discussed in the following, and the precision of the measure-
ment of !0 of only ±1°. There also was significant uncer-
tainty in the starting time for cases such as that of Fig. 3,
where the system is initially close to equilibrium #!0=180°
and !equil=163° from Eq. !19"$. Generally, a smaller time
uncertainty %t)0.04 s is due to the fact that the cylinder is
released by hand and the data acquisition rate is )40 Hz.

Fig. 1. A rolling asymmetric cylinder on a ramp with length L and angle of
inclination ". A rod of mass M is fixed on the cylinder at a radial distance R
and initially located at the angle !0 from the normal to the ramp. As the
cylinder rolls distance x down the ramp, M rotates to the angular position !.

Fig. 2. Calculation of the positions of three cylinders rolling down a 15°
ramp. The dotted line represents the motion of an empty cylinder, the dashed
line a cylinder with additional mass M on its axis, and the solid line a
cylinder with M at its edge. The following parameters !matching an experi-
mental run" were used: m=230 g, M =255 g, R1=3.8 cm, R2=4.4 cm, R
=2.6 cm, and r=1.0 cm.
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Figure 3 shows the results for M $m, a case that enhances
the jerky motion of the system. Measurements of the dis-
tance traveled and number of rotations show that the slipping
was minimal. However, the motion in this case was unsteady
and the ramp was visibly shaking. Some kinetic energy was
obviously lost by the can in this process. Additional energy
was lost because of air resistance as well as deformations at
the contact point. For the PVC pipe system, which experi-
enced smaller losses due to its smoother motion, we esti-
mated the total energy lost during several runs by measuring
!0 and ! and ẋ at a convenient point down the ramp. This
point was chosen to be the last local minimum of v because
there the angle was !equil, which is easy to determine and is
given in Eq. !19". Our results show that %E /E)5% at low
speeds, then increases sharply as the average rotational fre-
quency approached 3 rev/s. At 3.5 rev/s, %E /E)20%. En-
ergy losses for the coffee can system are expected to be
larger.

Good agreement between theory and experiment can be
expected only if frictional losses are taken into account. We
accounted for frictional losses by introducing an empirical
frictional acceleration, af, in addition to the acceleration in
Eq. !16". Air drag would contribute a small term proportional
to v2, while the rolling resistance would add a constant term
plus a term proportional to v at higher speeds, or a term
proportional to v2.5 at very high speeds5 higher than those
encountered in this experiment. Vibrational losses to the
ramp and other losses cannot be easily quantified. For sim-
plicity, we used an ad hoc approach and assumed simple
forms for af in the following comparisons. Figure 4 shows
excellent agreement between theory and experiment when
af &v2 is assumed.

Figure 5 shows a similar comparison for motion down the
ramp of the PVC pipe system, with M )m. Excellent agree-
ment is obtained with af &v. We note that rolling resistance
at very low velocities !'0.5 m/s" results in a constant af
term.5–7 If we apply the methods of Ref. 7 to our two sys-
tems, we find af )0.06 m/s2 for both cylinders. The average
value of af calculated for the coffee can simulation of Fig. 4

is 0.31 m/s2. It is reasonable that this value is much larger
than that of constant rolling resistance because the average
speed was 0.95 m/s, much larger than 0.5 m/s, and most
importantly because the cylinder motion caused the ramp to
shake, thus adding to the energy losses. A rolling resistance
model with a constant value of af would not be sufficient to
match the experimental data closely.

IV. OTHER MOTIONS

An interesting case occurs when the center of mass of the
non-axisymmetric cylinder, after less than one complete
revolution down the ramp, reaches the unstable equilibrium
position for torque !vertically above the contact point" with
zero velocity. Experimentally, this initial condition on !,
which we may call !limit, is the boundary between two very

Fig. 3. The following experimental values were used in the calculation: "
=6.75°, !0=180°, m=195 g, M =1000 g, R2=7.7 cm, R1=7.6 cm, R
=6. cm, and r=1.25 cm.

Fig. 4. Same parameters as Fig. 3, but with added empirical frictional ac-
celeration af =0.24v2.

Fig. 5. PVC pipe. The following experimental values were used in the
calculation: "=9.7°, !0=180°, m=230 g, M =255 g, R2=4.4 cm, R1
=3.8 cm, R=2.6 cm, r=1.0 cm, and af =0.1v.
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different motions. A slightly smaller initial angle !0 will
cause the cylinder to almost stop, but then resume speeding
up as it moves down the ramp, whereas a slightly larger !0
will cause the cylinder to roll back up the ramp. The motion
is thus very sensitive to the initial angle !0. We tested the
theory for motion starting with !0 near !limit and obtained
reasonably good agreement with the data for both cylinders,
slightly better for the PVC pipe can and M )m. With the
PVC pipe, we could produce the first motion !slow down and
resume" with !0=317° and the second !roll back" with !0
=318°. Both motions were reproduced closely by the calcu-
lation with the same values of !0 and with the assumption of
a small amount of frictional acceleration af &v, as shown in
Figs. 6 and 7. The initial angle !limit, determined experimen-

tally to be 317.5±1°, can be obtained theoretically by equat-
ing the initial and final potential energy !neglecting frictional
losses" as

cos!" + !limit" + K!limit = !!equil + 2("K − *1 − K2, !17"

where

K =
R2

Rc.m.
sin!"" , !18"

and

!equil =
(

2
− " + cos−1!K" . !19"

A graphical solution of Eq. !17" gives !limit=318.7°, in good
agreement with experiment. Note that small !but unac-
counted" frictional losses would require an angle slightly
smaller than the 318.7° predicted by the analysis, and thus
the agreement is likely to be even closer. In the two cases
considered in this section, the average absolute value of af
was between 0.032 !oscillatory motion" and 0.04 m/s2, rea-
sonably close to the constant rolling resistance value esti-
mated to be 0.06 m/s2. This agreement is expected because
the average speed in these cases was )0.5 m/s and other
energy losses were negligible.

V. ENERGY CONSIDERATIONS

Information about the motion can be obtained by plotting
T, T!, U, and E. For instance, we might expect that local
minima of the potential energy function will occur when M
is at the lowest point along the vertical, that is, at !=−",
because past this point M starts rising inside the cylinder.
However, hc.m. may still be decreasing if the motion is down
a ramp. The minima of U can be located by setting  U /  !
=0, which gives

! = − " + arcsin' R2

Rc.m.
sin!""( + 2n( , !20"

where n is an integer corresponding to the number of revo-
lutions down the ramp. This condition forces !Rc.m. /R2"min
=sin!"". Otherwise, U will be a monotonically decreasing
function with no local minima. For example, for the case in
Fig. 5, Eq. !20" predicts minima at !=23.06°. The numerical
calculation produced local minima at !=6.687, 12.970, and
19.253 rad, corresponding to 23.1° after one, two, and three
revolutions, respectively, in good agreement with the analyti-
cal formula.

VI. ADDITIONAL PROJECTS

We have presented a student project that can be tailored to
meet a range of expectations and time frames, from a simple
but nontrivial analytical solution to an extended project that
requires the student to integrate analytical, computational,
and experimental methods. To complete the project, the stu-
dent is asked to derive equations for ẍ, !equil, !limit, and the
location of the minima of U!!". Students need to build rigid
asymmetric cylinders and an adjustable ramp free of vibra-
tions, find ways to measure ! and " accurately, determine
whether slipping occurs, measure energy losses, align the

Fig. 6. PVC pipe released with M at !0=317°. The cylinder almost stops,
then continues to roll as it accelerates down the ramp. A value of af
=0.0726v was used to match the experimental data.

Fig. 7. PVC pipe released with M at !0=318°. The cylinder stops, rolls
back up the ramp, and then continues in oscillatory motion. A value of af
=0.165v was used to match the experimental data.
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system carefully, and consider sources of error. In the follow-
ing, we suggest some additional projects for more extensive
challenges.

Give an alternate derivation of Eq. !16" starting from T
=Tcyl+TM and U=Ucyl+UM.

Find an alternative solution using ẋ= f!x , px" and ṗx

=g!x , px", where px=  L /  ẋ and ṗx=  L /  x.
Formulate a more accurate and thorough treatment of roll-

ing resistance and other energy losses. For instance, the ap-
proach used here cannot match very closely all parts of the
oscillatory motion on a horizontal surface if the motion lasts
more than 10 s.

Show from geometry that there is a second equilibrium
angle given by

!equil! =
(

2
− " − cos−1 K . !21"

Show that this angle is identical to that given by Eq. !20".

Investigate equilibrium and small amplitude oscillations
about equilibrium. For "=0 show that for small %! simple
harmonic oscillations occur with period

T = 2(*MR2 + !m + M"R2
2 + m

2 !R1
2 + R2

2" + M r2

2 − 2MRR2

MgR
.

!22"

Compare this result to the output of the simulation and ex-
periment. For " and %! small, where %!=!−!equil! , show
that U!!"=A!2−B!+C near !equil! , thus producing simple
harmonic motion. The minimum of U occurs at !=B / !2A",
which again gives !equil! when " is small. Show analytically
that, for %! small and Rc.m. /R2*sin ", the equation for %!
is exactly the equation for simple harmonic motion, and the
period of oscillation is

T = 2(*MR2 + !m + M"R2
2 + m

2 !R1
2 + R2

2" + M r2

2 − 2MRR2 cos!!equil! "
MgR cos!" + !equil! "

. !23"

Compare this result to the output of the simulation
and experiment. Note that in the simulation T actually
varies slightly on the two sides !%!+0 and %!'0"
of the oscillation around !equil! when the limits of
applicability are tested, becoming shorter where U
is steeper. This variation of T is not predicted by
Eq. !23" because cos!!equil! " was used in place of cos!!equil!
+%!".

Minimize slipping and energy losses due to vibrations
for particularly jerky motions, for example, for large M
or ".

Devise a release method to accurately establish t0 and
v0. This is particularly relevant to matching theory and
experiment for motions that start near an equilibrium
point.
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