Assignment 1

Monday, 29 October

Problems: Due Friday, 2 November.

• Additional problem: Magnetic force between two moving charged particles
 Particle 1 of charge q_1 moves with velocity \vec{v}_1, and particle 2 of charge q_2 moves with velocity \vec{v}_2. They are separated by a distance r_{12} and the unit vector from particle 1 to particle 2 is \hat{r}_{12}.

 a. Combine the magnetic force law ($q\vec{v} \times \vec{B}$) and the Biot-Savart law to show that the magnetic force on particle 2 due to particle 1 is

 $$F_{\text{on 2 by 1}} = \frac{\mu_0 q_1 q_2}{4\pi \ r_{12}^2} \vec{v}_2 \times (\vec{v}_1 \times \hat{r}_{12}).$$

 b. Suppose that particle 1 is heading due east, while particle 2, located due north of particle 1, is heading due north. Show that the magnetic force on particle 2 due to particle 1 is finite and points east, whereas the magnetic force on particle 1 due to particle 2 is zero. [This violation of Newton’s third law shows that something is wrong with the above derivation. At fault is our use (actually misuse) of the Biot-Savart law, which applies only for steady currents but which we have used for the transient current of a single moving charge. The moral of the story is that the result of part (a), which looks like a perfectly good analog to Coulomb’s law, is not true in general.]

 c. (Optional... very difficult.) Integrate the Biot-Savart law around a circuit to show that when two complete circuits interact magnetically, the magnetic force on circuit 1 due to circuit 2 is equal and opposite to the magnetic force on circuit 2 due to circuit 1.

• Griffiths 7.8: Electric induction

• Griffiths 7.9: Apparent oversight in the flux rule

• Griffiths 7.15: Solenoid

• Griffiths 7.25: Inductance of a hairpin loop