A circuit with four resistors

The equivalent resistance of the triplet R_{2}, R_{4}, and R_{3} is R_{T} where

$$
\frac{1}{R_{T}}=\frac{1}{R_{2}}+\frac{1}{R_{4}}+\frac{1}{R_{3}}=\frac{R_{3} R_{4}+R_{2} R_{3}+R_{2} R_{4}}{R_{2} R_{4} R_{3}}
$$

and the equivalent resistance of the entire network is

$$
R_{\mathrm{eq}}=R_{1}+R_{T}=R_{1}+\frac{R_{2} R_{4} R_{3}}{R_{3} R_{4}+R_{2} R_{3}+R_{2} R_{4}}
$$

Plugging in the numbers supplied, $R_{\mathrm{eq}}=1.5 \Omega+1.5 \Omega=3.0 \Omega$.

The fully reduced equivalent circuit above has

$$
i=\frac{\mathcal{E}}{R_{\mathrm{eq}}}=\frac{6.0 \mathrm{~V}}{3.0 \Omega}=2.0 \mathrm{~A}
$$

Undoing the last equivalencing gives

$$
\begin{array}{ll}
i_{1}=2.0 \mathrm{~A} & \Delta V_{1}=i_{1} R_{1}=(2.0 \mathrm{~A})(1.5 \Omega)=3.0 \mathrm{~V} \\
i_{T}=2.0 \mathrm{~A} & \Delta V_{T}=i_{T} R_{T}=(2.0 \mathrm{~A})(1.5 \Omega)=3.0 \mathrm{~V}
\end{array}
$$

Undoing the first equivalencing gives

$$
\begin{aligned}
i_{2} & =\frac{\Delta V_{T}}{R_{2}}=\frac{3.0 \mathrm{~V}}{4.0 \Omega}=0.75 \mathrm{~A} \\
i_{3} & =\frac{\Delta V_{T}}{R_{3}}=\frac{3.0 \mathrm{~V}}{4.0 \Omega}=0.75 \mathrm{~A} \\
i_{4} & =\frac{\Delta V_{T}}{R_{4}}=\frac{3.0 \mathrm{~V}}{6.0 \Omega}=0.50 \mathrm{~A}
\end{aligned}
$$

(As a check, you can verify that $i_{1}=i_{2}+i_{3}+i_{4}$.)
Grading: Students are asked to "Find the equivalent resistance of this network and the current through each resistor." They earn two points for each of these five items.

