An application for RC circuits

This circuit (with lamp)

During the rise (that is, for $0<t<T$) the voltage across the capacitor is (see LSM, page 456, last equation in caption for figure 10.39)

$$
V_{C}(t)=\mathcal{E}\left(1-e^{-t / R C}\right) .
$$

I select the period T by demanding that

$$
V_{L}=\mathcal{E}\left(1-e^{-T / R C}\right) .
$$

Solve for R :

$$
\begin{aligned}
\frac{V_{L}}{\mathcal{E}}-1 & =-e^{-T / R C} \\
-\frac{T}{R C} & =\ln \left(1-\frac{V_{L}}{\mathcal{E}}\right) \\
R & =-\frac{T}{C \ln \left(1-V_{L} / \mathcal{E}\right)} .
\end{aligned}
$$

Using $V_{L}=72.0 \mathrm{~V}, \mathcal{E}=95.0 \mathrm{~V}, C=0.150 \mu \mathrm{~F}$, and $T=0.500 \mathrm{~s}$, we find

$$
R=2.35 \mathrm{M} \Omega .
$$

Grading: Starting off (e.g. a graph like these or a circuit diagram): 2 points
Exponential growth equation: 2 points
Solve for R : 2 points
Number: 2 points
Units: 1 point
Three significant figures: 1 point

