Electric potential energy

The potential energy belongs to the pairs of particles - to the "bonds" - not to the individual particles. Hence we must sum over the pairs rather than summing over the particles.

$$
\begin{aligned}
U_{12}=U_{13}=U_{24}=U_{34} & =\frac{1}{4 \pi \epsilon_{0}}\left(-\frac{q^{2}}{a}\right) \\
U_{14}=U_{23} & =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q^{2}}{\sqrt{2} a}\right) \\
\text { so the total electric P.E. is } U & =(-4+\sqrt{2}) \frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{a} .
\end{aligned}
$$

This energy is negative. That is, there is less electric potential energy in this configuration than in the four particles being infinitely far apart.

Grading: Use the general idea that any startup is valuable. There's no need for the final remark about negative energy. I put it in just to battle the misconception propagated by Star Trek: The Original Series in the episode "By Any Other Name".

