Electric potential due to a quarter disk

Solution A (Invented by me.)
This problem breaks apart into three distinct pieces:

1. Get the concepts straight. From superposition,
potential due to full disk $=$ potential due to north quadrant + potential due to east quadrant + potential due to south quadrant + potential due to west quadrant.

But at any point immediately above the sharp tip of the pie slice, symmetry demands that

$$
\begin{aligned}
\text { potential due to north quadrant } & =\text { potential due to east quadrant } \\
& =\text { potential due to south quadrant } \\
& =\text { potential due to west quadrant. }
\end{aligned}
$$

So at any point immediately above the sharp tip of the pie slice,

$$
\text { potential due to a quadrant }=\frac{1}{4} \times \text { potential due to full disk. }
$$

2. Find the formula from the concepts. The formula for the potential due to a full disk is given by LSM as the last equation of example 7.15, "Potential Due to a Uniform Disk of Charge" (pages 305-306). We need one quarter of that or

$$
\begin{equation*}
\frac{1}{4} k_{e} 2 \pi \sigma\left(\sqrt{z^{2}+R^{2}}-z\right)=\frac{\pi}{2} k_{e} \sigma\left(\sqrt{z^{2}+R^{2}}-z\right) . \tag{1}
\end{equation*}
$$

3. Put numbers into the formula. Converting distances into meters and using three significant digits, this formula gives the answer

$$
47.1 \mu \mathrm{~V} .
$$

Solution B (Invented by Megan Kyi and Solomon Chang, class of 2026.)
Follow the reasoning of LSM examples 7.14, "Potential Due to a Ring of Charge", and 7.15, "Potential Due to a Uniform Disk of Charge" (pages 305-306), but on page 305, don't integrate from 0 to 2π, instead integrate from 0 to $\pi / 2$. The result will be $\frac{1}{4}$ of the last equation of example 7.15 on page 306 , namely

$$
\begin{equation*}
\frac{1}{4} k_{e} 2 \pi \sigma\left(\sqrt{z^{2}+R^{2}}-z\right)=\frac{\pi}{2} k_{e} \sigma\left(\sqrt{z^{2}+R^{2}}-z\right) . \tag{2}
\end{equation*}
$$

You can put numbers into the formula (be sure to convert distances into meters and to use three significant digits) giving the answer

$$
47.1 \mu \mathrm{~V}
$$

Grading using my strategy: 3 points for the idea that you want $\frac{1}{4}$ the potential from the full disk.
The reasoning can be as telegraphic as "By symmetry", but there must be some reasoning.
4 points for the equation (1).
1 point for the number.
1 point for the units.
1 point for three significant figures.

Grading using Megan/Solomon strategy: 3 points for the idea that the integral for the pie slice will be $\frac{1}{4}$ the integral for the full pie.
4 points for the equation (2).
1 point for the number.
1 point for the units.
1 point for three significant figures.

