Field due to a pipe of charge

By symmetry, $\vec{E}(\vec{r})$ depends only on the distance r from the tube axis and is directed radially away from the axis. Use a Gaussian surface as in LSM figure 6.30, page 255:

$$
\Phi=E(r)(2 \pi r L)=\frac{Q_{\mathrm{inside}}}{\epsilon_{0}}
$$

(a.) For $r>R, Q_{\text {inside }}=\lambda L$, so $E(r)=\frac{\lambda}{2 \pi \epsilon_{0} r}$.
(b.) For $r<R, Q_{\text {inside }}=0$, so $E(r)=0$.

Grading: 2 points for any sort of sketch
2 points for symmetry statement
2 points application of Gauss's law
1 point for result (a.)
1 point for result (b.)
2 points for graph

