Hanging charges

(a.)

Forces on right-hand ball:

$\vec{F}_{\text {grav }}=m g \vec{F}_{\text {elec }}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{x^{2}}$
At equilibrium, $\vec{F}_{\text {grav }}+\vec{F}_{\text {elec }}+\overrightarrow{\text { Tension }}=0$, whence the two triangles outlined in dashes are similar. Thus

$$
\begin{equation*}
\frac{\left|\overrightarrow{\vec{F}}_{\text {elec }}\right|}{\left|\vec{F}_{\text {grav }}\right|}=\frac{x / 2}{\sqrt{L^{2}-(x / 2)^{2}}} \approx \frac{x / 2}{L} \tag{1}
\end{equation*}
$$

where the approximation holds because $x \ll L$. The ratio is then

$$
\begin{equation*}
\frac{\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{x^{2}}}{m g} \approx \frac{x / 2}{L} \quad \Longrightarrow \quad x \approx\left(\frac{1}{4 \pi \epsilon_{0}} \frac{2 q^{2} L}{m g}\right)^{1 / 3} \tag{2}
\end{equation*}
$$

(b.)

If you increase... formula says x will... common sense says x will...

m	decrease	decrease
g	decrease	decrease
q	increase	increase
L	increase	$?$

(c.) Charged pairs of +3 nC or of -3 nC will repel each other in exactly the same manner. . . the formula is independent of sign. This is true even when x is large.
(d.) Although the charge is no longer symmetric, the electrical force will remain symmetric. In the formula q^{2} is replaced by $q_{L} q_{R}$.

Grading: 2 points for sketch
1 point for labels on sketch
1 point for equation (1)
1 point for equation (2)
0.5 point for each case of "formula say x will ..." in part (b.) [2 points total]

1 point for part (c.)
2 points for part (d.)

