Hanging from a charged wall

In equilibrium, the forces sum to zero so

$$T_x = T\sin\theta = \frac{q\sigma}{2\epsilon_0}$$
$$T_y = T\cos\theta = mg$$

Dividing one equation by the other eliminates the uninteresting quantity T to produce

$$\tan\theta = \frac{q\sigma}{2\epsilon_0 mg}$$

or, solving for the charge density,

$$\sigma = \frac{2\epsilon_0 mg}{q} \tan \theta.$$

Plugging in the numbers supplied, $\sigma = 5.0 \times 10^{-9} \ {\rm C/m^2}.$

Grading: 2 points for sketch; 2 points for finding the electrical force $F_e = q\sigma/(2\epsilon_0)$; 2 points for finding the equation for $\tan \theta$; 1 point for solving for σ ; 1 point for the numerical answer; 2 points for two significant figures.

Extra: By the way... does the result for $\tan \theta$ make sense?

