Hanging from a charged wall

In equilibrium, the forces sum to zero so

$$
\begin{aligned}
T_{x}=T \sin \theta & =\frac{q \sigma}{2 \epsilon_{0}} \\
T_{y}=T \cos \theta & =m g
\end{aligned}
$$

Dividing one equation by the other eliminates the uninteresting quantity T to produce

$$
\tan \theta=\frac{q \sigma}{2 \epsilon_{0} m g}
$$

or, solving for the charge density,

$$
\sigma=\frac{2 \epsilon_{0} m g}{q} \tan \theta .
$$

Plugging in the numbers supplied, $\sigma=5.0 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$.
Grading: 2 points for sketch; 2 points for finding the electrical force $F_{e}=q \sigma /\left(2 \epsilon_{0}\right) ; 2$ points for finding the equation for $\tan \theta ; 1$ point for solving for $\sigma ; 1$ point for the numerical answer; 2 points for two significant figures.

Extra: By the way... does the result for $\tan \theta$ make sense?

If q or σ increases, then θ increases.
If m or g increases, then θ decreases.
If $q=0$, then $\theta=0^{\circ}$.
If $g=0$, then $\theta=90^{\circ}$.

