Parallel RC circuit

a. $\Delta V_{R}(t)=i_{R}(t) R$, so $i_{R}(t)=\frac{\mathcal{E}(t)}{R}=\frac{\mathcal{E}_{m}}{R} \sin (\omega t)$.
b. $C=\frac{q(t)}{\Delta V_{C}(t)}$, so $q(t)=C \mathcal{E}(t)=C \mathcal{E}_{m} \sin (\omega t)$.
c. $i_{C}(t)=\frac{d q(t)}{d t}$, so $i_{C}(t)=\omega C \mathcal{E}_{m} \cos (\omega t)=\frac{\mathcal{E}_{m}}{X_{C}} \cos (\omega t)$.
d. $i_{G}(t)=i_{C}(t)+i_{R}(t)$, so $i_{G}(t)=\mathcal{E}_{m}\left(\frac{1}{R} \sin (\omega t)+\frac{1}{X_{C}} \cos (\omega t)\right)$.

If you play around with trig formulas, you'll find that this is the same as

$$
i_{G}(t)=\mathcal{E}_{m} \sqrt{\frac{1}{R^{2}}+\frac{1}{X_{C}^{2}}} \sin (\omega t+\phi) \quad \text { where } \quad \tan \phi=\frac{R}{X_{C}} .
$$

Grading: 2 points for free; 2 points for each part. The "play around with trig formulas" mentioned in part (d.) is not required.

