Resistors in parallel

(a.) The equivalent resistance of two resistors in parallel is $R_{\text {eff }}$ where

$$
\begin{aligned}
\frac{1}{R_{\mathrm{eff}}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{2}}{R_{1} R_{2}}+\frac{R_{1}}{R_{1} R_{2}}=\frac{R_{2}+R_{1}}{R_{1} R_{2}} \\
R_{\mathrm{eff}} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

(b.) The dimensions of

$$
\frac{R_{1} R_{2} R_{3}}{R_{1}+R_{2}+R_{3}} \quad \text { are } \quad \frac{[\mathrm{ohm}]^{3}}{\mathrm{ohm}}=[\mathrm{ohm}]^{2}
$$

so this expression can't equal a resistance.
(c.) The equivalent resistance of three resistors in parallel is $R_{\text {eff }}$ where

$$
\begin{aligned}
\frac{1}{R_{\mathrm{eff}}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{R_{2} R_{3}}{R_{1} R_{2} R_{3}}+\frac{R_{1} R_{3}}{R_{1} R_{2} R_{3}}+\frac{R_{1} R_{2}}{R_{1} R_{2} R_{3}}=\frac{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}{R_{1} R_{2} R_{3}} \\
R_{\mathrm{eff}} & =\frac{R_{1} R_{2} R_{3}}{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}
\end{aligned}
$$

which has the proper dimensions of [ohm]!
Grading: Part (a), 3 points. Part (b), 3 points. Part (c), 4 points. Not required to point out that the proper formula for $R_{\text {eff }}$ has the proper dimensions.

