Rod of charge

(a.)

Suppose \vec{E} pointed this way.

Then if you rotated the rod 180 degrees about a vertical axis . . .

. . . the \vec{E} would rotate right along with the charge.

But after the rotation you're back to exactly the same charge distribution you started with, so you must have the same \vec{E} ! The only directions that rotate 180° yet end up as they started off are straight up and straight down, so \vec{E} must be one of those.
(b.)
(2.) Magnitude of the \vec{E} due to
this bit of source charge is

$$
\frac{1}{4 \pi \epsilon_{0}} \frac{(q / L) d x}{x^{2}+y^{2}}
$$

3.)Vertical component of this \vec{E} is

$$
\frac{1}{4 \pi \epsilon_{0}} \frac{(q / L) d x}{x^{2}+y^{2}}\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

$$
\sqrt{x^{2}+y^{2}}
$$

(1.) This bit of source charge has charge $(q / L) d x$.

【I have defined x with an origin at the center of the rod, not at the left end of the rod, in order to respect the left-right symmetry of the problem. I could have defined x otherwise, and I would have gotten the right answer, but the intermediate steps would have been more complicated.]

Thus, the total \vec{E} has magnitude

$$
\frac{1}{4 \pi \epsilon_{0}}(q / L) y \int_{-L / 2}^{+L / 2} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x
$$

This integral is tabulated (for example Dwight equation 200.03) or you could use a computer algebra system like Mathematica:

$$
\int_{-L / 2}^{+L / 2} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x=\left[\frac{x}{y^{2}\left(x^{2}+y^{2}\right)^{1 / 2}}\right]_{-L / 2}^{+L / 2}=\frac{L}{y^{2}\left((L / 2)^{2}+y^{2}\right)^{1 / 2}} .
$$

Thus the magnitude of the total \vec{E} is

$$
\frac{1}{4 \pi \epsilon_{0}} \frac{q}{y\left((L / 2)^{2}+y^{2}\right)^{1 / 2}} .
$$

This is equivalent to equation 5.12 in the textbook LSM.
(c.)

Candidate (1) gives ∞ when $y=L / 2$, imaginary numbers when $y<L / 2$.
Candidate (2) is dimensionally incorrect.
Candidate (3) is correct.
Candidate (4) gives, when $L=0, E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\sqrt{2} y^{2}}$, in violation of Coulomb's law.
(d.)

When y increases, E decreases. Good.
When q increases, E increases. Good.
When L increases, E decreases. Yes. . more of the charge is far from the field point, and a lot of the \vec{E} due to the rod tips goes into pointing horizontally and canceling out.
(e.) If $y \gg L$, then $y^{2} \gg(L / 2)^{2}$, so $(L / 2)^{2}+y^{2} \approx y^{2}$.

Thus the magnitude of total \vec{E} is approximately $\frac{1}{4 \pi \epsilon_{0}} \frac{q}{y^{2}} \ldots$ Coulomb's law!
Grading: 2 points for part (a.)
3 points for part (b.) [quoting LSM equation 5.12 correctly gives full credit]
2 points for part (c.)
2 points for part (d.)
1 point for part (e.)

