The thick shell of charge

From the class discussion about "onions" of charge,

$$
E(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{\text {[inside r] }}}{r^{2}}
$$

So

$$
E(r)= \begin{cases}0 & r<a \\ \frac{1}{4 \pi \epsilon_{0}} \frac{4}{3} \pi\left(r^{3}-a^{3}\right) \frac{\rho}{r^{2}} & a<r<b \\ \frac{1}{4 \pi \epsilon_{0}} \frac{4}{3} \pi\left(b^{3}-a^{3}\right) \frac{\rho}{r^{2}} & b<r\end{cases}
$$

The graphs of the left-most and right-most parts of the function are straightforward. For the middle portion $(a<r<b)$ note that the slope is proportional to

$$
\text { slope } \propto 1+2 \frac{a^{3}}{r^{3}}
$$

so that (i) the slope is always postive - never zero or negative - and (ii) as r increases, the slope decreases.
Grading: 2 points for each part of answer equation $(r<a, a<r<b$, and $b<r) ; 4$ points for graph.

