Using Coulomb's law

Situation before the third charge is added:

The magnitude of each force shown above is $\frac{1}{4 \pi \epsilon_{0}} \frac{4 q^{2}}{L^{2}}$.
(a.) To produce equilibrium, the forces due to the third charge must oppose the forces shown above. Thus the third charge must be negative and must be located between the first two charges.

Forces due to the third charge are:

The magnitude of the force on the left is $\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{x^{2}}$.
The magnitude of the force on the right is $\frac{1}{4 \pi \epsilon_{0}} \frac{4 q Q}{(L-x)^{2}}$.
Equilibrium occurs when

$$
\begin{equation*}
\frac{q Q}{x^{2}}=\frac{4 q^{2}}{L^{2}} \quad \text { and } \quad \frac{4 q Q}{(L-x)^{2}}=\frac{4 q^{2}}{L^{2}} \tag{4}
\end{equation*}
$$

that is when

$$
\begin{equation*}
Q L^{2}=4 q x^{2} \quad \text { and } \quad Q L^{2}=q(L-x)^{2} \tag{5}
\end{equation*}
$$

Solving these last two simultaniously for x gives

$$
4 x^{2}=(L-x)^{2} \quad \Longrightarrow \quad \pm 2 x=L-x \quad \Longrightarrow \quad x=-L \text { or } 3 x=L
$$

The solution $x=-L$ is spurious. . . we've already agreed that the third charge must be between the first two. Thus we take $x=\frac{1}{3} L$ and plug that back into equation (5) to find Q. The results are

$$
\begin{equation*}
x=\frac{1}{3} L \quad \text { and } \quad Q=\frac{4}{9} q . \tag{6}
\end{equation*}
$$

(Recall that the third charge is not Q, but $-Q$.)
(b.) Stability analysis. At equilibrium, the forces on the third charge are

Suppose the third charge shifts a bit to the left (while the first two charges remain fixed). Then the leftward force increases and the rightward force decreases. Thus a displacement to the left results in a net force to the left. Unstable equilibrium!
«You could have also analyzed a shift of the third charge to the right, or up, or down. Or a shift in either of the first two charges. But once you find one instability, you can stop. . . the equilibrium is unstable if any instailities exist.】

Grading: 2 points for some sort of startup, usually a graph
1 point for writing forces as in equation (1)
1 point for writing forces as in equation (2)
1 point for writing forces as in equation (3)
2 points for setting forces equal as in equation (4)
2 points for reaching solution (6)
1 point for stability analysis

