Width of a resonance curve

The resonance curve is given by LSM equation 15.15, namely (where I have used the notation from class, not from LSM)

$$
\begin{equation*}
I\left(\omega_{d}\right)=\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}} . \tag{1}
\end{equation*}
$$

Objective: Find the two values, ω_{-}and ω_{+}, at which $I\left(\omega_{d}\right)=\mathcal{E}_{m} /(2 R)$.

$$
\begin{array}{rll}
\frac{\mathcal{E}_{m}}{\sqrt{R^{2}+\left(\omega_{ \pm} L-1 / \omega_{ \pm} C\right)^{2}}} & =\frac{\mathcal{E}_{m}}{2 R} & \\
R^{2}+\left(\omega_{ \pm} L-1 / \omega_{ \pm} C\right)^{2} & =4 R^{2} & \\
\left(\omega_{ \pm} L-1 / \omega_{ \pm} C\right)^{2} & =3 R^{2} & \\
\omega_{ \pm} L-1 / \omega_{ \pm} C & \left.= \pm \sqrt{3 R^{2}} \quad \text { [Notice the } \pm \text { out front! }\right] \\
\omega_{ \pm}^{2} L \mp \sqrt{3 R^{2}} \omega_{ \pm}-1 / C & =0 & \tag{6}
\end{array}
$$

Solve using quadratic formula

$$
\begin{equation*}
\omega_{ \pm}=\frac{ \pm \sqrt{3 R^{2}} \pm \sqrt{3 R^{2}+4 L / C}}{2 L} \tag{7}
\end{equation*}
$$

This gives us four values for $\omega_{ \pm}$! Which two of these are physically relevant? Because

$$
\sqrt{3 R^{2}+4 L / C}>\sqrt{3 R^{2}}
$$

the two roots with $-\sqrt{3 R^{2}+4 L / C}$ are negative and hence physically irrelevant. Thus

$$
\begin{equation*}
\omega_{-}=\frac{1}{2 L}\left(\sqrt{3 R^{2}+4 L / C}-\sqrt{3 R^{2}}\right) ; \quad \omega_{+}=\frac{1}{2 L}\left(\sqrt{3 R^{2}+4 L / C}+\sqrt{3 R^{2}}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \omega=\omega_{+}-\omega_{-}=\frac{\sqrt{3} R}{L} \tag{9}
\end{equation*}
$$

Remarkably, this is independent of C !
Grading: Two points for reaching each of these five milestones: equation (1), equation (2), equation (6), equation (8), equation (9).

