Anharmonic Oscillator

a. Using the results from the problem “Ladder Operators for the Simple Harmonic Oscillator”,
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b. The perturbation is H = b33, so to first order
EWM = b(n|i?|n) = 0.

To second order (which, in this case, is the leading non-vanishing correction)
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In this case B — B = hw(n —m) and Hy, ,,, = Hy, ., so
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The sum is
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whence
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For large n, the ratio E,(?) /Efzo) increases linearly with n — the energy shifts are not small. This

makes sense: the SHO approximation V (z) = %kxz is valid only near the origin. Far from the origin, the

“correction” term bx® dominates %kx? High energy states are spread out far (remember from “Ladder
Operators for the Simple Harmonic Oscillator” that Az = /h/mwy/n + %) so they sample regions where
bx? is large.

[Grading: 5 points for part (a); 5 points for part (b).]



