Statistical Mechanics 2024

Model Solutions for First Exam

1. The coin toss

A single coin is tossed seven times.

- a. The probability of obtaining all heads is $1/2^7$.
- b. The probability of obtaining alternating heads and tails is $2/2^7$. (One alternating pattern starts with heads, the other starts with tails.)
- c. The probability of obtaining the pattern THHTTHT is $1/2^7$.
- d. The probability of obtaining a pattern with one head and six tails is $7/2^7$. (There are seven such patterns.)

2. Fluid work

For a quasistatic change, the dissipative work is zero so

work = configuration work =
$$-\int_{\text{initial}}^{\text{final}} p(V) dV$$
.

Now along path (a)

$$p(V) = \frac{K}{V^{\gamma}}$$
 where $K = p_i V_i^{\gamma} = p_f V_f^{\gamma}$,

so the work along path (a) is

$$\text{Work} = -\int_{V_i}^{V_f} \frac{K}{V^{\gamma}} \, dV = \frac{K}{(\gamma - 1)} \left[\frac{1}{V^{\gamma - 1}} \right]_{V_i}^{V_f} = \frac{K}{(\gamma - 1)} \left[\frac{1}{V_f^{\gamma - 1}} - \frac{1}{V_i^{\gamma - 1}} \right] = \frac{p_f V_f - p_i V_i}{\gamma - 1}.$$

Path (a) is quasistatic and adiabatic, so Q=0 and $\Delta E=Q+W=W$. Plugging in numbers, W=-36 J, Q=0, and $\Delta E=-36$ J. [Note that we never need to calculate any power V^{γ} .]

Now ΔE is the same for all paths. Thus for paths (b), (c), and (d) we can find W through "negative of area under the path" and Q through $Q = \Delta E - W$. The results are

path	W	Q
a	-36 J	0 J
b	-224 J	188 J
С	-115.5 J	79.5 J
d	-7 J	-29 J

3. Magnetic systems

For these systems (using x = E/(NH))

$$\frac{1}{T} = \frac{\partial S}{\partial E} = \frac{df}{dx} \frac{\partial x}{\partial E} = f'(E/(NH)) \left(\frac{1}{NH}\right)$$
$$\frac{M}{T} = \frac{\partial S}{\partial H} = \frac{df}{dx} \frac{\partial x}{\partial H} = f'(E/(NH)) \left(-\frac{E}{NH^2}\right)$$

Thus

$$M = \frac{M/T}{1/T} = \frac{f'(E/(NH))\left(-\frac{E}{NH^2}\right)}{f'(E/(NH))\left(\frac{1}{NH}\right)} = -\frac{E}{H}.$$

This result might be familiar to you from an electricity and magnetism class in the form E = -MH.

4. From equation of state to entropy

Combining the two equations in the problem statement gives

$$\frac{p(E,V,N)}{T(E,V,N)} = \frac{\partial S(E,V,N)}{\partial V} = \frac{Nk_B}{V}.$$

If this were a single-variable problem then the right-hand equation would read

$$\frac{dS}{dV} = \frac{Nk_B}{V}$$

and you would immediately integrate this equation as

$$dS = Nk_B \frac{dV}{V}$$

$$\int dS = Nk_B \int \frac{dV}{V}$$

$$S = Nk_B [\ln V + \text{constant}] = Nk_B \ln(V/V_0)$$

where in the last step I have written the constant in the form $-\ln V_0$. I prefer this last form because it makes clear that V_0 is a constant with the dimensions of volume.

For the case where S is a function of three variables, the result is exactly the same except the integration over V is carried out at constant E and N, whence the "constant" V_0 , although independent of V, might (and generally will) depend upon E and N. Thus

$$S(E, V, N) = k_B N \ln \frac{V}{V_0(E, N)}.$$

[You can check for yourself to see that, for the classical monatomic ideal gas, the function $V_0(E,N)$ is given through

$$\frac{1}{V_0(E,N)} = e^{5/2} \left(\frac{4\pi mE}{3h_0^2 N^{5/3}} \right)^{3/2}. \] \ \ \,]$$