How Did We Find Out About Quantum Mechanics?

Dan Styer
Department of Physics and Astronomy
Oberlin College

Max Planck (age 42 in 1900)

Albert Einstein (age 26 in 1905)

Einstein's four 1905 papers:
Quantum mechanics of light (heuristic photoelectric effect)

Brownian motion (atoms exist!)

On the Electrodynamics of Moving Bodies

Does the Inertia of a Body Depend on its Energy Content? ($\mathrm{E}=\mathrm{mc}^{2}$)

Einstein's four 1905 papers:
Quantum mechanics of light (heuristic photoelectric effect) "is very revolutionary"

Brownian motion (atoms exist!)

On the Electrodynamics of Moving Bodies
"a modification of the theory of space and time"
Does the Inertia of a Body Depend on its Energy Content? ($\mathrm{E}=\mathrm{mc}^{2}$)

Niels Bohr (age 28 in 1913)

Werner Heisenberg (age 24 in 1925)

Werner Heisenberg (age 24 in 1925)

Helgoland

Wolfgang Pauli (age 25 in 1925)

Louise de Broglie (age 31 in 1923)

Louise de Broglie

Erwin Schrödinger (age 38 in 1925)

Arosa, Switzerland

Arosa, Switzerland

Arosa, Switzerland

Erwin Schrödinger (age 38 in 1925)

Erwin Schrödinger

Crater Schrödinger

Matrix Mechanics (Heisenberg, Born)

versus

Wave Mechanics (Schrödinger)

Matrix and Wave Mechanics proven equivalent in 1926 by Schrödinger, Pauli, and Carl Eckert (age 24)

Carl Eckert (photo 1948)

Paul A. M. Dirac (age 24 in 1926)

Paul A. M. Dirac

Satyendra Bose

1924-25: quantum mechanics applied to large number of particles (with A. Einstein)

$$
\text { (age } 31 \text { in 1925) }
$$

Satyendra Bose

1925: predicted a new phase of matter - solid, liquid, gas, and "Bose condensate"

Michael Fisher

1970s: extended this work

Michael Fisher

Michael Fisher

Michael Fisher's granddaughter

Michael Fisher

Michael Fisher's granddaughter

My son,
Gregory Michael Styer

2 Groups of Physicists Produce Matter That Einstein Postulated

By MALCOLM W. BROWNE

By chilling a cloud of atoms to a temperature barely above absolute zero, scientists at a Colorado laboratory have at last created a bizarre type of matter that had eluded experimenters ever since its potential existence was rostulated by Albert Einstein 70 years ago.

The creation of this Bose-Einstein condensate - named for Einstein and the Indiar theorist Satyendra Nath Bose - vas hailed yesterday as the basis o^{\prime} a new field of research expected to explain some fundamental mysteries of atomic physics.

A Texas grous later produced similar results. The achievement should allow physicist! to peer directly into the realm of the ultrasmall.

In a commert being published today by the jouraal Science, Dr. Keith Burnett, a physicist at Oxford University in England, said, "The term Holy Grall seems quite appropriate, given the singular importance of this discovery."

Details of the achievement were disclosed in a echnical paper published by Science and at a news conference yesterday in Boulder, Colo.

Conarately t mecearch team led
that it had independently created a. Bose-Einstein condensate made of atoms different from those used in the Colorado laboratory and using a somewhat different method.

A Bose-Einstein condensate is a gas of atoms that have been so chilled that their normal motion is virtually halted. In this almost stationary condition, the wavelengths of individual atoms - the dimensions that define the regions in which they may be found - grow to relatively enormous size, overlapping each other and merging into a kind of super atom. This merged atom, despite growing to a range of sizes typical of those of bacteria, obeys the rules of quantum mechanics, the physics of the ultrasmall.

The creation of this unique state of matter by the Colorado group occurred on June 5, when a microscopic blob of Bose-Einstein condensate abruptly appeared in the glass vessel containing super-cold rubidium atoms. The condensate was de-

Continued on Page A14, Column 4

[^0]
Experimental verification!

1995

Experimental verification!

1995
by Carl Wieman and Eric Cornell

Experimental verification!
extended to "fermionic condensate" by Deborah Jin in 2003

Linus Pauling (age 30 in 1931)

Linus Pauling and family

Linus Pauling

Linus Pauling

 gave his name to Linus Torvalds who gave his name to Linux

Maria Goeppert Mayer nuclear shell theory, 1950

Crater Goeppert Mayer on Venus

Maria Goeppert Mayer 1950: nuclear shell theory 1960: appointed professor at U. Calif. San Diego 1963: Nobel Prize

Maria Goeppert Mayer 1950: nuclear shell theory 1960: appointed professor at U. Calif. San Diego 1963: Nobel Prize Headline in San Diego newspaper: "S.D. Mother Wins Nobel Prize"

Einstein
and
Bohr
in 1930

Einstein and Bohr
in 1930

John Bell (age 36 in 1964)

Lucien Hardy

Paul Kwiat

Paul Kwiat

Exceptional Bound States and Negative Entanglement Entropy

Ching Hua Lee© ${ }^{*}$

Department of Physics, National University of Singapore, Singapore 117542, Singapore
(1)
(Received 9 December 2020; accepted 29 November 2021; published 7 January 2022)
This Letter introduces a new class of robust states known as exceptional bound (EB) states, which are distinct from the well-known topological and non-Hermitian skin boundary states. EB states occur in the presence of exceptional points, which are non-Hermitian critical points where eigenstates coalesce and fail to span the Hilbert space. This eigenspace defectiveness not only limits the accessibility of state information but also interplays with long-range order to give rise to singular propagators only possible in non-Hermitian settings. Their resultant EB eigenstates are characterized by robust anomalously large or negative occupation probabilities, unlike ordinary Fermi sea states whose probabilities lie between 0 and 1 . EB states remain robust after a variety of quantum quenches and give rise to enigmatic negative entanglement entropy contributions. Through suitable perturbations, the coefficient of the logarithmic

Exceptional Bound States and Negative Entanglement Entropy

Ching Hua Lee ${ }^{*}{ }^{*}$
Department of Physics, National University of Singapore, Singapore 117542, Singapore
(a) (Received 9 December 2020; accepted 29 November 2021; published 7 January 2022)

This Letter introduces a new class of robust states known as exceptional bound (EB) states, which are distinct from the well-known topological and non-Hermitian skin boundary states. EB states occur in the presence of exceptional points, which are non-Hermitian critical points where eigenstates coalesce and fail to span the Hilbert space. This eigenspace defectiveness not only limits the accessibility of state information but also interplays with long-range order to give rise to singular propagators only possible in non-Hermitian settings. Their resultant EB eigenstates are characterized by robust anomalously large or negative occupation probabilities, unlike ordinary Fermi sea states whose probabilities lie between 0 and 1 . EB states remain robust after a variety of quantum quenches and give rise to enigmatic negative entanglement entropy contributions. Through suitable perturbations, the coefficient of the logarithmic

Exceptional Bound States and Negative Entanglement Entropy

Ching Hua Lee®*
Department of Physics, National University of Singapore, Singapore 117542, Singapore
(Q) (Received 9 December 2020; accepted 29 November 2021; published 7 January 2022)

This Letter introduces a new class of robust states known as exceptional bound (EB) states, which are distinct from the well-known topological and non-Hermitian skin boundary states. EB states occur in the presence of exceptional points, which are non-Hermitian critical points where eigenstates coalesce and fail to span the Hilbert space. This eigenspace defectiveness not only limits the accessibility of state information but also interplays with long-range order to give rise to singular propagators only possible in non-Hermitian settings. Their resultant EB eigenstates are characterized by robust anomalously large or negative occupation probabilities, unlike ordinary Fermi sea states whose probabilities lie between 0 and 1 . EB states remain robust after a variety of quantum quenches and give rise to enigmatic negative entanglement entropy contributions. Through suitable perturbations, the coefficient of the logarithmic

Exceptional Bound States and Negative Entanglement Entropy

Ching Hua Lee®

Department of Physics, National University of Singapore, Singapore 117542, Singapore(Received 9 December 2020; accepted 29 November 2021; published 7 January 2022)
This Letter introduces a new class of robust states known as exceptional bound (EB) states, which are distinct from the well-known topological and non-Hermitian skin boundary states. EB states occur in the presence of exceptional points, which are non-Hermitian critical points where eigenst to span the Hilbert space. This eigenspace defectiveness not only limits the information but also interplays with long-range order to give rise to singular propag; non-Hermitian settings. Their resultant EB eigenstates are characterized by robust : negative occupation probabilities, unlike ordinary Fermi sea states whose probabilitie EB states remain robust after a variety of quantum quenches and give rise tc entanglement entropy contributions. Through suitable perturbations, the coefficier

FIG. 2. (a) Numerical spatial lattice profiles of EB states ϕ_{+} (solid) vs the 2 -site propagator $U_{x}=\left\langle c_{x,+}^{\dagger} c_{0,-}\right\rangle$. Close agreement is observed for sufficiently singular EPs with $b(k)$ of $B=2,4$ and 6 th order, but not the $B=1$ case given by $b(k)=2 i \sin k$. Other non-EB states are superimposed as a gray background sea

Exceptional Bound States and Negative Entanglement Entropy

Ching Hua Lee©

Department of Physics, National University of Singapore, Singapore 117542, Singapore(Received 9 December 2020; accepted 29 November 2021; published 7 January 2022)
This Letter introduces a new class of robust states known as exceptional bound (EB) states, which are We next examine how this asymmetrically singular $P(k)$ leads to EBs by studying the 2 -site propagators obtained by Fourier transforming $U(k)$ and $D(k)$ to real space via $\left\langle c_{x_{1},+}^{\dagger} c_{x_{2},-}\right\rangle=-\frac{1}{2} \sum_{k} e^{i k\left(x_{1}-x_{2}\right)} U(k) \quad$ and $\left\langle c_{x_{1},-}^{\dagger} c_{x_{2},+}\right\rangle=$ $-\frac{1}{2} \sum_{k} e^{i k\left(x_{1}-x_{2}\right)} D(k)$. For concreteness, we introduce the ansatz

$$
\begin{align*}
& b(k)=b_{0}[2(1-\cos k)]^{B / 2}, \tag{4a}\\
& a(k)=b(-k)+a_{0}, \tag{4b}
\end{align*}
$$

which is realizable with lattice hoppings across at most $B / 2$ sites (see [89] for odd B). Near the EP, $\left\langle c_{x_{1},-}^{\dagger}-c_{x_{2},+}\right\rangle \sim$ $\sqrt{\left(b_{0} / a_{0}\right)} 2^{B / 2} e^{-4(\Delta x)^{2} / B}$ is short-ranged, quadratically decaying with $\Delta x=x_{1}-x_{2}$. However, due to the divergent denominator in $U(k) \sim \sqrt{a_{0} / b(k)}$, we have the following scaling behaviors with L (up to constant multiplicative factors, which play no role in the emergence of EB states), as numerically verified in [89]:

$$
\begin{equation*}
\left.\left\langle c_{x_{1},+}^{\dagger} c_{x_{2},-}\right\rangle\right|_{B>4} \sim-\sqrt{\frac{a_{0}}{b_{0}}}\left(\frac{L}{\pi}\right)^{B / 2-1} \times\left(2-\frac{\pi^{2} \Delta x^{2}}{L^{2}}\right) \tag{5}
\end{equation*}
$$

which is long-ranged in $\Delta x=x_{1}-x_{2}$ and diverges as $L^{B / 2-1}$. For the important cases of $B=2$ and $B=4$ [89],

$$
\begin{align*}
& \left.\left\langle c_{x_{1},+}^{\dagger} c_{x_{2},-}\right\rangle\right|_{B=2} \sim-\sqrt{\frac{a_{0}}{b_{0}}}\left(\log \frac{L}{\pi \Delta x}\right), \tag{6}\\
& \left.\left\langle c_{x_{1},+}^{\dagger} c_{x_{2},-}\right\rangle\right|_{B=4} \sim-\sqrt{\frac{a_{0}}{b_{0}}}(L-2 \Delta x), \tag{7}
\end{align*}
$$

which diverges logarithmically and linearly with both L and x. Because of EP defectiveness, even a very small
litian skin boundary states. EB states occur in the 1 critical points where eigenst eness not only limits the : , give rise to singular propag: are characterized by robust : sea states whose probabilitie quenches and give rise tc perturbations, the coefficier $\left|\phi_{+}\right|, U_{x}$

FIG. 2. (a) Numerical spatial lattice profiles of EB states ϕ_{+} (solid) vs the 2 -site propagator $U_{x}=\left\langle c_{x,+}^{\dagger} c_{0,-}\right\rangle$. Close agreement is observed for sufficiently singular EPs with $b(k)$ of $B=2,4$ and 6 th order, but not the $B=1$ case given by $b(k)=2 i \sin k$. Other non-EB states are superimposed as a gray background sea

Werner Heisenberg (age 24 in 1925)

On this frigid winter morning, I hope you'll spend a moment of appreciation for our universe that is both weird and wonderful.

[^0]: || || || |||||||| THE NKw vonk tTMEs

