Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds

Benjamin Linowitz

Department of Mathematics
Oberlin College
Motivation: Length spectra of hyperbolic 3-manifolds

The geometric genus spectrum of a hyperbolic 3-manifold

What is an arithmetic hyperbolic manifold?
Definition: A hyperbolic 3-manifold is a quotient $M = \mathbb{H}^3/\Gamma$ of three dimensional hyperbolic space \mathbb{H}^3 by a discrete subgroup Γ of $\text{PSL}_2(\mathbb{C})$ acting freely and properly discontinuously.

The Kleinian group Γ is isomorphic to the fundamental group $\pi_1(M)$.

If we relax the requirement that Γ acts freely, allowing Γ to contain torsion, then we obtain a hyperbolic 3-orbifold.

Theorem (Mostow-Prasad Rigidity, 1974)

If M_1 and M_2 are complete finite volume hyperbolic n-manifolds with $n > 2$ then any isomorphism $f : \pi_1(M_1) \to \pi_1(M_2)$ is induced by a unique isometry from M_1 to M_2.
Fundamental domains of a pair of isospectral hyperbolic 3-orbifolds
What is an arithmetic hyperbolic 3-manifold?

The **commensurator** C_Γ of a Kleinian group $\Gamma \subset \text{PSL}_2(\mathbb{C})$ is

$$C_\Gamma = \{ g \in \text{PSL}_2(\mathbb{C}) : g\Gamma g^{-1} \text{ is commensurable with } \Gamma \}.$$

Theorem (Margulis)

Γ is **arithmetic** if and only if C_Γ is dense in $\text{PSL}_2(\mathbb{C})$.

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
Background
Recall the classification of elements $\gamma \in \text{PSL}_2(\mathbb{C}) \setminus \{\text{Id}_2\}$:

- γ is elliptic if $\text{Tr}(\gamma) \in \mathbb{R}$ and $|\text{Tr}(\gamma)| < 2$.
- γ is parabolic if $\text{Tr}(\gamma) = \pm 2$.
- γ is loxodromic otherwise.

We will typically abuse notation and consider the eigenvalues (up to sign) of a lift of γ to $\text{SL}_2(\mathbb{C})$. These are the roots of

$$p_\gamma(x) = x^2 - \text{Tr}(\gamma)x + 1;$$

that is,

$$\lambda_\gamma = \frac{\text{Tr}(\gamma) \pm \sqrt{\text{Tr}(\gamma)^2 - 4}}{2}. $$
When γ is loxodromic it has a pair of fixed points and the unique geodesic in H^3 joining these points is the axis of γ.

Let $M = H^3/\Gamma$ be a finite-volume hyperbolic 3-manifold. The axis of γ projects onto a closed geodesic in M whose length is the translation length $\ell_0(\gamma)$ of γ, where

$$\ell_0(\gamma) = 2 \log |\lambda_\gamma|.$$

The element γ also rotates around its axis as it translates along it. If $\theta(\gamma)$ is the angle incurred it translating along the axis by $\ell_0(\gamma)$, then the complex translation length of γ is

$$\ell(\gamma) = \ell_0(\gamma) + i\theta(\gamma).$$
The length spectrum $L(M)$ of a hyperbolic 3-manifold M is the set of all complex translation lengths of all closed geodesics in M, considered with multiplicities.

The length spectrum of M determines the Laplace spectrum of M, hence determines spectral invariants like dimension and volume.

It is known however, that the length spectrum $L(M)$ of M does not determine the isometry class of M.
Theorem (Vignéras, 1980)

There exist non-isometric hyperbolic 3-manifolds with the same length spectra.
It is in general unknown whether $L(M)$ determines the commensurability class of M.

This is known to be the case when M is arithmetic however.

Theorem (Chinburg, Hamilton, Long and Reid, 2008)

If two arithmetic hyperbolic 3-manifolds have the same length spectra then they are commensurable.
On the other hand non-commensurable hyperbolic 3-manifolds may share arbitrarily large portions of their length spectra.

Theorem (Futer and Millichap, 2016)

For every sufficiently large $n > 0$ there exists a pair of non-isometric finite-volume hyperbolic 3-manifolds $\{N_n, N_{n}^{\mu}\}$ such that:

1. \(\text{vol}(N_n) = \text{vol}(N_{n}^{\mu})\), where this volume grows coarsely linearly with n.
2. The (complex) length spectra of N_n and N_{n}^{μ} agree up to length n.
3. N_n and N_{n}^{μ} have at least e^n/n closed geodesics up to length n.
4. N_n and N_{n}^{μ} are not commensurable.

This builds on previous work of Millichap.
The Length Spectrum of Hyperbolic 3-Manifolds

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
One of the major open problems in the study of arithmetic hyperbolic 3-manifolds is the following.

Conjecture (Short Geodesic Conjecture)

There is a positive universal lower bound for the length of closed geodesics on an arithmetic hyperbolic 3-orbifold.

It is known that the Short Geodesic Conjecture would follow from Lehmer’s Conjecture on Mahler measures of polynomials.

This conjecture has long been known to be false in the context of non-arithmetic hyperbolic 3-orbifolds. In 2006 Agol showed that closed hyperbolic 4-manifolds may also have arbitrarily short closed geodesics.
Let M be a closed hyperbolic 3-manifold.

The length spectrum of M encodes isometric immersions of S^1 into M.

It turns out to be useful to consider the two-dimensional case; that is, totally geodesic immersions of orientable, finite type surfaces into M.

Let $GS(M)$ denote the set of isometry classes of finite area, properly immersed, totally geodesic surfaces of M, considered up to free homotopy.

$GS(M)$ is called the **Geometric Genus Spectrum** of M.
The geometric genus spectrum of a hyperbolic 3-manifold

The geometric genus spectrum was introduced by McReynolds and Reid.

Theorem (McReynolds and Reid, 2009)

If two arithmetic hyperbolic 3-manifolds have the same geometric genus spectra then they are commensurable.
Recently Jeff Meyer and I have proven that non-commensurable hyperbolic 3-manifolds may share arbitrarily large portions of their geometric genus spectra.

This is a two-dimensional analog of Futer and Millichap’s result.

Given $N \geq 1$, define $GS(M)[N]$ to be the first N terms of $GS(M)$ (which we consider as being ordered by area).
The geometric genus spectrum of a hyperbolic 3-manifold

Theorem (L. and Meyer, 2016)

Let \(N \geq 1 \). There exists an infinite sequence of incommensurable arithmetic \(M_1, M_2, \ldots \) such that:

1. \(\text{GS}(M_i)[N] = \text{GS}(M_j)[N] \) for all \(i, j, \)
2. \(\text{vol}(M_n) < c_1(n \log(2n))^{3/2}, \) and
3. \(\text{sys}_1(M_n) < c_2 \log(n). \)
Define $\text{Sys}_{2}^{TG}(M)$ to be the totally geodesic 2-systole of M. That is, the minimal area of an immersed totally geodesic surface.

In analogy with the Short Geodesic Conjecture, one may ask whether there is a universal lower bound for $\text{Sys}_{2}^{TG}(M)$ as M varies over all arithmetic hyperbolic 3-orbifolds.

This turns out to be trivially true, as it has long been known that the $(2, 3, 7)$ triangle group has minimal co-area amongst all Fuchsian groups.
The geometric genus spectrum of a hyperbolic 3-manifold

Theorem (L. and Meyer, 2016)

Let M be an arithmetic hyperbolic 3-manifold which has minimal volume in its commensurability class and contains a finite area, properly immersed, totally geodesic surface. Then

$$\text{Sys}^2_{TG}(M) > c \cdot \text{vol}(M)^{1/2},$$

where c is a positive constant.

Corollary

For every $X > 0$ there exist infinitely many arithmetic hyperbolic 3-manifolds M such that $\text{Sys}^2_{TG}(M) > X$.
Let $\text{sysg}(M)$ denote the **systolic genus** of M; that is, the minimal genus of a π_1-injective surface of M.

Denote by $N(V)$ the number of commensurability classes of arithmetic hyperbolic 3-manifolds which have a representative with volume less than V.

Denote by $N^g(V; x)$ the number of commensurability classes of arithmetic hyperbolic 3-manifolds which have a representative M with volume less than V and $\text{sysg}(M) < x$.
The geometric genus spectrum of a hyperbolic 3-manifold

Theorem (L. and Meyer)

For all sufficiently large x we have

$$\lim_{V \to \infty} \frac{N^g(V; x)}{N(V)} = 0.$$

Proof.

Our proof has two main ingredients. The first is a strengthening of Gromov’s high genus systole inequality and is due to Belolieptsy.

The second is a systole counting result which is joint work with Ben McReynolds, Paul Pollack and Lola Thompson.
Theorem (Belolipetsky)

Let M be a closed hyperbolic 3-manifold. For any $\epsilon > 0$, if $\text{sys}_1(M)$ is sufficiently large, then

$$\text{sys}_g(M) \geq e^{(1/2 - \epsilon) \text{sys}_1(M)}.$$

Choose x_0 large enough so that Belolipetsky’s bound holds with $\epsilon = 1/4$ whenever $\text{sys}_1(M) > x_0$.

It is now straightforward to show that $N^g(V; x)$ is at most the number of commensurability classes of arithmetic hyperbolic 3-manifolds having a representative with volume less than V and systole at most $\max\{x_0, 4 \log(x)\}$.
The geometric genus spectrum of a hyperbolic 3-manifold

The result now follows from the following.

Theorem (L., McReynolds, Pollack and Thompson, 2015)

Let $F(V, X)$ denote the number of commensurability classes of arithmetic hyperbolic 3-manifolds with volume less than V and systole less than X. Then

$$\lim_{V \to \infty} \frac{F(V, X)}{N(V)} = 0.$$
What is an arithmetic hyperbolic manifold?
What is an arithmetic hyperbolic manifold?

Let d be a square-free integer and \mathcal{O}_d be the ring of integers of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$.

The group $\text{PSL}_2(\mathcal{O}_d)$ is a discrete subgroup of $\text{PSL}_2(\mathbb{C})$.

The quotient space $Q_d = \mathbb{H}^3/\text{PSL}_2(\mathcal{O}_d)$ is a non-compact hyperbolic 3-orbifold with finite volume called a Bianchi orbifold.

Theorem

A non-compact hyperbolic 3-orbifold with finite volume is arithmetic if and only if it is commensurable to a Bianchi orbifold.
What is an arithmetic hyperbolic manifold?

Luigi Bianchi

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
What is an arithmetic hyperbolic manifold?

The construction of compact arithmetic hyperbolic 3-orbifolds is more nuanced and involves generalizing the following construction of $\text{PSL}_2(\mathcal{O}_d)$.

\[M_2(\mathbb{Q}(\sqrt{-d})) \supset M_2(\mathcal{O}_d) \rightarrow \text{SL}_2(\mathcal{O}_d) \rightarrow \text{PSL}_2(\mathcal{O}_d). \]

We will replace $M_2(\mathbb{Q}(\sqrt{-d}))$ with a quaternion algebra, $M_2(\mathcal{O}_d)$ with a quaternion order and the determinant map with the reduced norm.
What is an arithmetic hyperbolic manifold?

A brief introduction to quaternion algebras and orders
In the 1830s and 1840s William Rowan Hamilton sought a number system which would play a role in three-dimensional geometry analogous to that of the complex numbers for two-dimensional geometry.

“Every morning in the early part of the above-cited month [October 1843], on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me: Well, Papa, can you multiply triplets? Whereto I was always obliged to reply, with a sad shake of the head: No, I can only add and subtract them.”

– Hamilton (in a letter to his son)
What is an arithmetic hyperbolic manifold?

Theorem (Hamilton, 1843)

The \mathbb{R}-algebra \mathbb{H} with basis $\{1, i, j, ij\}$ and defining relations

\[i^2 = -1 \quad j^2 = -1 \quad ij = -ji \]

is a four-dimensional division algebra.

Hamilton was so excited by this discovery that he carved these relations into the stone of the Brougham Bridge.
What is an arithmetic hyperbolic manifold?

Benjamin Linowitz

Totally geodesic surfaces in arithmetic hyperbolic 3-manifolds
What is an arithmetic hyperbolic manifold?

Let’s write $(-1, -1, \mathbb{R})$ in place of \mathbb{H}.

This notation suggests a number of ways to generalize \mathbb{H}.

For instance, let $(1, 1, \mathbb{R})$ be the \mathbb{R}-algebra with basis \{1, i, j, ij\} and defining relations

$$i^2 = 1 \quad j^2 = 1 \quad ij = -ji.$$

Then $(1, 1, \mathbb{R}) \cong M_2(\mathbb{R})$ via $i \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $j \mapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
More generally, we can define \((a, b, \mathbb{R})\) to be the \(\mathbb{R}\)-algebra with basis \(\{1, i, j, ij\}\) and defining relations

\[
i^2 = a \quad j^2 = b \quad ij = -ji \quad a, b \in \mathbb{R}^*.
\]

It’s not too hard to show that

- \((a, b, \mathbb{R}) \cong \mathbb{H}\) if \(a, b < 0\) and
- \((a, b, \mathbb{R}) \cong \mathbb{M}_2(\mathbb{R})\) otherwise.

Thus \((a, b, \mathbb{R})\) is either a division algebra or else \(\mathbb{M}_2(\mathbb{R})\).
What is an arithmetic hyperbolic manifold?

There are other ways that we could have generalized \((-1, -1, \mathbb{R})\).

If \(F\) is a field of characteristic zero and \(a, b \in F^*\) we can define the generalized quaternion algebra \((a, b, F)\).

Let \(F = \mathbb{Q}\) and consider the \(\mathbb{Q}\)-algebra \((-1, -1, \mathbb{Q})\).

As \((-1, -1, \mathbb{Q}) \subset (-1, -1, \mathbb{R})\), we see that \((-1, -1, \mathbb{Q})\) is a division algebra.

As before we also see that \((1, 1, \mathbb{Q}) \cong M_2(\mathbb{Q})\).
What is an arithmetic hyperbolic manifold?

Recall that if $F = \mathbb{R}$, (a, b, F) is a division algebra or else $M_2(\mathbb{R})$.

Theorem (Wedderburn)

For any field F, if the F-algebra (a, b, F) is not a division algebra then $(a, b, F) \cong M_2(F)$.

Note that the case $F = \mathbb{R}$ is special in that in general there will not be a unique quaternion division algebra over F.
What is an arithmetic hyperbolic manifold?

A “complex” example: \(F = \mathbb{C} \).

Let \(A \) be a quaternion algebra over \(\mathbb{C} \).

By the fundamental theorem of algebra, \(A \) cannot be a division algebra.

Then by Wedderburn’s theorem, \(A \cong M_2(\mathbb{C}) \).

Thus \(M_2(\mathbb{C}) \) is the only quaternion algebra over \(\mathbb{C} \).
Extension of scalars:

Let F be a field and F'/F a field extension.

If A is a quaternion algebra over F then we can consider the quaternion algebra $A \otimes_F F'$ over F'.

Concretely, if $A = (a, b, F)$ then $A \otimes_F F' = (a, b, F')$.

This is especially important in arithmetic applications.
Reduced norm:

Let A be a quaternion algebra over a number field F.

We’ve already seen that we have an embedding $A \hookrightarrow M_2(\mathbb{C})$.

The **reduced norm** of A is the composite map

$$A \hookrightarrow M_2(\mathbb{C}) \to^{\text{det}} \mathbb{C}$$

For $A = M_2(F)$ the reduced norm coincides with the determinant.
What is an arithmetic hyperbolic manifold?

Let F be a number field with ring of integers \mathcal{O}_F.

An order of an F-algebra is a subring which is also a finitely generated \mathcal{O}_F-module containing an F-basis of the algebra.

Example 1: $\mathbb{Z}[i]$ is a quadratic order of the \mathbb{Q}-algebra $\mathbb{Q}(i)$.

Example 2: $\text{M}_2(\mathbb{Z})$ is a maximal order of $\text{M}_2(\mathbb{Q})$.

Example 3: $\mathcal{O}_F[i, j]$ is always an order of the F-algebra (a, b, F) when $a, b \in \mathcal{O}_F$.
What is an arithmetic hyperbolic manifold?

Constructing hyperbolic 3-orbifolds from quaternion orders
What is an arithmetic hyperbolic manifold?

Consider the imaginary quadratic field \(\mathbb{Q}(\sqrt{-3}) \) and quaternion algebra \(B = (-1, 7, \mathbb{Q}(\sqrt{-3})) \).

There is an isomorphism \(\varphi : B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{C}) \).

Let \(\mathcal{O} \) be a maximal orders of \(B \) and \(\mathcal{O}^1 \) be the multiplicative subgroup consisting of those elements of reduced norm 1.

The image in \(\text{PSL}_2(\mathbb{C}) \) of \(\mathcal{O}^1 \) is denoted \(\Gamma^1_{\mathcal{O}} \) and is a cocompact arithmetic Kleinian group.

One can define an \textbf{arithmetic hyperbolic 3-manifold} to be a hyperbolic 3-manifold whose fundamental group is isomorphic to a group of the form \(\Gamma^1_{\mathcal{O}} \) (though perhaps with a different number field and quaternion algebra).
What is an arithmetic hyperbolic manifold?

Theorem (Borel)

The volume of $H^3/\Gamma^1_\mathcal{O}$ is

$$\text{vol}(H^3/\Gamma^1_\mathcal{O}) = \frac{|d_{-3}|^{3/2} \zeta_{-3}(2)}{4\pi^2} \prod_{p \in \text{Ram}_f(B)} (N(p) - 1)$$

$$= \frac{|-3|^{3/2} \cdot 1.28519}{4\pi^2} (7 - 1)(7 - 1)$$

$$= 6.08964\ldots$$
What is an arithmetic hyperbolic manifold?
What is an arithmetic hyperbolic manifold?

Now consider the rational quaternion algebra $A = (-1, 7, \mathbb{Q})$.

There is an isomorphism $\varphi : A \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R})$.

Let \mathcal{E} be a maximal orders of A and \mathcal{E}^1 be the multiplicative subgroup consisting of those elements of reduced norm 1.

The image in $\text{PSL}_2(\mathbb{R})$ of \mathcal{E}^1 is denoted $\Gamma_{\mathcal{E}}^1$ and is a cocompact arithmetic Fuchsian group.

Because

$$A \otimes_{\mathbb{Q}} \mathbb{Q}(-3) = (-1, 7, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}(-3) = (-1, 7, \mathbb{Q}(-3)) = B,$$

we get an inclusion $\Gamma_{\mathcal{E}}^1 \subset \Gamma_{\mathcal{O}}^1$.
The area of $H^2/\Gamma^1_\mathcal{E}$ is

$$\text{area}(H^2/\Gamma^1_\mathcal{E}) = \frac{8\pi |d_\mathbb{Q}|^{3/2} \zeta(2)}{4\pi^2} \prod_{p \in \text{Ram}_f(A)} (N(p) - 1)$$

$$= \frac{8\pi \cdot 1^{3/2} \cdot \pi^2 / 6}{4\pi^2} (2 - 1)(7 - 1)$$

$$= 2\pi.$$
In this manner we obtain a hyperbolic 3-orbifold \mathbb{H}^3/Γ^1_O with a totally geodesic surface $\mathbb{H}^2/\Gamma^1_\mathcal{E}$ of area 2π.

The commensurability class of an arithmetic hyperbolic surface / 3-manifold is given by the quaternion algebra associated to it.

Therefore any other surface arising from the quaternion algebra $A = (-1, 7, \mathbb{Q})$ would be commensurable to $\mathbb{H}^2/\Gamma^1_\mathcal{E}$.
What is an arithmetic hyperbolic manifold?

So in order to produce incommensurable totally geodesic surfaces we want non-isomorphic quaternion algebras A_1, A_2 such that

$$A_1 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}) \cong (-1, 7, \mathbb{Q}(\sqrt{-3})) \cong A_2 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}).$$

Similarly, to produce non-commensurable hyperbolic 3-manifolds with a totally geodesic surface in common, we want to choose quaternion algebras like $(-1, 7, \mathbb{Q}(\sqrt{-d_1}))$ and $(-1, 7, \mathbb{Q}(\sqrt{-d_2}))$ (for $d_1 \neq d_2$). Kleinian groups arising from both of these algebras will contain Fuchsian groups like Γ^1_E.

What is an arithmetic hyperbolic manifold?

Producing non-commensurable arithmetic hyperbolic 3-manifolds with large overlaps in their geometric genus spectra is more nuanced.

It amounts to finding a large number of non-isomorphic quaternion algebras A_1, A_2, \ldots over \mathbb{Q} and two quaternion algebras B_1, B_2 over $\mathbb{Q}(\sqrt{-d_1}), \mathbb{Q}(\sqrt{-d_2})$ such that

$$A_1 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-d_1}) \cong A_2 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-d_1}) \cong \cdots \cong B_1$$

and

$$A_1 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-d_2}) \cong A_2 \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-d_2}) \cong \cdots \cong B_2.$$

Our quantitative estimates require relating the volume formula for surfaces arising from the A_i to 3-manifolds arising from B_1 and B_2.
Thanks!