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1. INTRODUCTION. The Gregory series for arctangent

arctan x = x − x3

3
+ x5

5
− x7

7
+ x9

9
− · · · , |x | ≤ 1,

combines with the identity

π

4
= arctan 1

to yield Leibniz’s series

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · · .

This series was a theoretical breakthrough in the calculation of decimal digits of π ,
although it is impractical due to its excruciatingly slow rate of convergence. Elegant
identities such as

π

4
= arctan

1

2
+ arctan

1

3
, (Machin, 1706 [48, p. 7])

π

4
= 5 arctan

1

7
+ 2 arctan

3

79
, (Euler, 1755 [55, p. 645])

π

4
= 4 arctan

1

5
− arctan

1

239
, (Machin, 1706 [20, 48])

π

2
= 2 arctan

1

2
+ arctan

4

7
+ arctan

1

8
, and (Newton, 1676 [48, p. 2])

π

4
= 8 arctan

1

10
− arctan

1

239
− 4 arctan

1

515
(Simson, 1723 [48, p. 10])

utilize the xn terms in Gregory’s series and have been instrumental in the calculation of
decimal digits of π . Upon learning of these identities, one naturally desires an identity
of the form

π = r arctan x

where r and x are rational and |x | < 1 is small. Such an identity would require only
one evaluation of the arctangent function and this evaluation would converge quickly.
However, identities of this form do not exist and this fact is not mentioned in the
literature alongside lists of such multiple-angle identities. The present article gives
a very natural proof of this fact using a simple consequence of unique factorization
of Gaussian integers (Main Lemma, Section 2). Section 3 gives several applications
of the Main Lemma to arctangent identities, triangles, polygons on geoboards, and
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smooth curves without rational points. Section 4 concludes with historical remarks
and suggestions for further reading. Two key points for the reader to take away are: the
complex numbers can provide insight into real (R) problems, and unique factorization,
when it exists, is a powerful tool. Indeed, a fallacious proof of Fermat’s last theorem
given by Lamé in 1847 depended crucially on unique factorization in certain rings
where unique factorization fails. This failure led to important advances in algebra (see
[38, pp. 4–5, Ch. 5] or [41, pp. 169–176]).

2. GAUSSIAN INTEGERS. To make this article self contained, we review basic
facts about the Gaussian integers. The reader familiar with the Gaussian integers
should skip ahead to the Main Lemma at the end of this section. In this paper the
natural numbers N consist of the positive integers.

Let R be a commutative ring with additive and multiplicative identities 0 = 0R

and 1 = 1R respectively. Say that w �= 0 divides z in R, written w|z, provided there
exists v ∈ R such that wv = z. A nonzero element w ∈ R is called a zero divisor if
there exists a nonzero element v ∈ R such that wv = 0 (for example, [2] [3] = [0]
in Z/6Z). R is an integral domain provided it contains no zero divisors, and this is
equivalent to cancellation holding in R: wv = wz and w �= 0 imply v = z.

A unit in R is a divisor of 1. Elements w and z in R are associates provided w|z
and z|w. Cancellation implies that (nonzero) elements are associates if and only if
they differ by multiplication by a unit. An element z ∈ R is irreducible provided it is
a nonzero nonunit and if z = wv, then w or v is a unit; in other words, z admits no
nontrivial factorization. An element z ∈ R is prime provided it is a nonzero nonunit
and if z|wv, then z|w or z|v.

An integral domain R is a unique factorization domain (UFD) provided every
nonzero nonunit in R is the product of finitely many irreducibles in R (existence)
and this product is unique up to order and unit multiples (uniqueness).

The rational integers Z form the canonical and motivating example of a UFD. We
remark that the terminology “rational integer” is standard; one may define the ring of
integers in any number field K and if K = Q is the rational field, then the ring of
integers is Z [38, §2.3]. Commonly, one calls a rational integer p “prime” provided it
is not equal to 0 or ±1 and its only rational integer divisors are ±1 and ±p. This abuse
of terminology (such a p is technically irreducible) is overlooked since irreducibles
and primes coincide in Z; a proof of this fact, and that Z is a UFD, follows exactly
the same steps as below for the Gaussian integers. Note that in any integral domain,
primes are irreducibles by cancellation; however irreducibles need not be primes. For
example, working in Z

[√−3
] = {

a + b
√−3 | a, b ∈ Z

}
we have

2 · 2 =
(

1 + √−3
) (

1 − √−3
)

. (1)

The norm

N
(

a + b
√−3

)
=

(
a + b

√−3
) (

a − b
√−3

)
= a2 + 3b2

is multiplicative, meaning N (αβ) = N (α)N (β), from which it follows easily that
1 + √−3 is irreducible. Equation (1) shows that 1 + √−3 divides the product 2 · 2.
However, it is easy to check directly that 1 + √−3 does not divide 2. Therefore,
1 + √−3 is irreducible but not prime in Z

[√−3
]
. For more examples see [38, Section

4.4]. We mention that non-prime irreducibles are completely characteristic of integral
domains in which factorization into irreducibles exists but is not unique [38, Theorem
4.13].
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Figure 1. The Gaussian integers Z [i], a square lattice in C.

The Gaussian integers Z [i] = {a + bi | a, b ∈ Z} are the integer lattice in C (see
Figure 1) and form a commutative ring. The norm of z = a + bi is N (z) = zz =
a2 + b2. The norm is multiplicative: N (zw) = N (z)N (w). In particular, if w|z in Z [i],
then N (w)|N (z) in Z.

The norm shows that Z [i] contains no zero divisors. Hence it is an integral domain
and cancellation holds, and the units in Z [i] are ±1 and ±i . The norm will also play a
key role in showing Z [i] is a UFD. One should note that the square shape of the lattice
Z [i] is at the heart of unique factorization. For interesting discussions on lattice shape
and the success or failure of unique factorization in certain integral domains, see [40,
pp. 229–245] and [41, pp. 169–176].

w

iw

–iw

–w

2w

d

N(w)1/2

N(w)1/2

Figure 2. Square geometry of a sublattice yielding the division property.

The first step to unique factorization in Z [i] is to prove the division property: if
w �= 0 and z are Gaussian integers, then there exist Gaussian integers ϕ and ρ such
that z = ϕw + ρ and N (ρ) < N (w). For the proof, observe that the sublattice

wZ [i] = {ϕw | ϕ ∈ Z [i]} ⊆ Z [i]

has a square shape as shown in Figure 2. Therefore each z ∈ Z [i] lies within d units of
a point in wZ [i] where d = √

N (w)/
√

2 <
√

N (w). Choose ϕ such that N (z − ϕw)

is minimized (such a ϕ may not be unique, but that does not matter) and let ρ =
z − ϕw.

The next step is to obtain the greatest common divisor (gcd) via the Euclidean
algorithm, which we now review in the context of Gaussian integers. If w and z are
Gaussian integers, not both zero, then we define gcd(w, z) to be any common divisor
of w and z of maximal norm. As w or z is nonzero, the set of common divisors is finite
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(since the norm is multiplicative and nonnegative) and contains elements of maximal
norm, so gcd(w, z) exists. By taking unit multiples of one value of gcd(w, z) we obtain
four values of gcd(w, z). It seems possible that gcd(w, z) may assume more than four
values, that is, two values of gcd(w, z) might not be associates. We will see this is not
the case. With gcd(w, z) defined as above, we will prove that:

(i) gcd(w, z) is unique up to multiplication by units,
(ii) every common divisor of w and z divides gcd(w, z), and

(iii) gcd(w, z) is a Gaussian integer linear combination of w and z.

Property (i) says that gcd(w, z) assumes exactly four values. We will prove these prop-
erties by producing gcd(w, z) via the Euclidean algorithm.

The core idea in the Euclidean algorithm is the following.

Euclidean Algorithm Core Idea. Let α and β be nonzero Gaussian integers. By the
division algorithm, write β = ϕα + ρ with N (ρ) < N (α). Then

(a) the pair {β, α} has the same set of common divisors as the pair {α, ρ}, and
(b) the pair {β, α} has the same set of Gaussian integer linear combinations as the

pair {α, ρ}.
The proofs of (a) and (b) are very simple. For the backward direction in (b), let
γ = xα + yρ be a Gaussian integer linear combination of α and ρ. Then γ = yβ +
(x − yϕ)α is a Gaussian integer linear combination of β and α. The other three parts
are proved similarly.

The Euclidean algorithm starts with Gaussian integers w and z, not both zero, and
produces gcd(w, z). In case, say, w = 0, then the output is z. Otherwise, w and z are
nonzero and without loss of generality N (w) ≤ N (z). Apply the division algorithm
repeatedly as follows:

z = ϕ1w + ρ1 such that 0 < N (ρ1) < N (w),

w = ϕ2ρ1 + ρ2 such that 0 < N (ρ2) < N (ρ1),

ρ1 = ϕ3ρ2 + ρ3 such that 0 < N (ρ3) < N (ρ2),

· · · · · · · · ·
ρk−2 = ϕkρk−1 + ρk such that 0 < N (ρk) < N (ρk−1), and

ρk−1 = ϕk+1ρk + 0.

The procedure halts when a remainder of 0 is first obtained (last line above) and the
output is the last nonzero remainder ρk . The procedure halts after finitely many steps
since the norms of successive remainders form a strictly decreasing sequence of non-
negative integers. We now show that the output is gcd(w, z) and that the gcd satisfies
the three properties stated above. Starting with the pair {z, w}, apply part (a) of the
Euclidean Algorithm Core Idea k + 1 times to see that the pairs

{z, w}, {w, ρ1}, {ρ1, ρ2}, . . . , {ρk−1, ρk}, and {ρk, 0}
all have the same set of common divisors. In other words, the set of common divi-
sors of z and w is precisely the set of divisors of ρk . The norm is multiplicative and
nonnegative, and so the divisors of ρk of maximal norm are exactly the associates of
ρk . Thus, the values of gcd(w, z) are exactly the associates of ρk , and property (i) is
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proved. Property (ii) is now immediate. To prove property (iii), we simply work back-
wards. Clearly ρk is a linear combination of the pair {ρk, 0}. After k + 1 applications
of part (b) of the Euclidean Algorithm Core Idea, we obtain ρk as a Gaussian integer
linear combination of the pair {z, w} as desired. Note that in the trivial case w = 0, the
values of gcd(0, z) are exactly the associates of z and the three properties are satisfied.
Thus gcd(w, z) has properties (i)–(iii).

If w and z are Gaussian integers and gcd(w, z) is a unit, then w and z are said to
be relatively prime. In this case, properties (i) and (iii) imply that there exist Gaussian
integers x and y such that xw + yz = 1.

With the gcd in hand, one may show that irreducibles are primes in Z [i]. Let w ∈
Z [i] be irreducible. Then the set of divisors of w equals {±1, ±i, ±w, ±iw} and we
have the following.

Observation. If α is a Gaussian integer, then gcd(w, α) = 1 or gcd(w, α) = w ac-
cording to whether α divides w.

So, suppose w|zv in Z [i]. By the observation, either gcd(w, z) = 1 or gcd(w, z) = w.
The latter implies w|z, while the former implies xw + yz = 1 for some Gaussian
integers x and y; thus, xwv + yzv = v and so w|v since w|zv, as desired. Therefore,
irreducibles and primes coincide in Z [i] (recall that primes are irreducibles in any
integral domain by cancellation).

It follows easily that Z [i] is a UFD: each nonzero nonunit w has a factorization into
irreducibles by induction on N (w), and this factorization is unique up to order and unit
multiples using cancellation repeatedly and the fact that irreducibles are primes.

A thorough introduction to the Gaussian integers would include the characterization
of Gaussian primes. We will not need this characterization, so the interested reader may
see [40, pp. 233–236] or most any elementary number theory text. We do, however,
point out some basic facts that are used below. If N (w) is a rational prime, then w

is a Gaussian prime. In particular, 1 + i is prime. The following are equivalent for a
Gaussian integer w: w is prime, w is prime, and uw is prime where u is any unit.

We now come to the main result of this section. The Gaussian integers that lie on
the four lines in Figure 3 will play a key role.

Figure 3. Four lines in C: Imz = 0, Rez = Imz, Rez = 0, and Rez = −Imz.

Main Lemma. Let z �= 0 be a Gaussian integer. There is a natural number n such
that zn is real if and only if z lies on one of the four lines in Figure 3.

Proof. For the backward direction, let n = 1, 2, or 4. For the forward direction, let
zn = m ∈ Z where 0 �= z = a + bi . The general case follows easily from the case
where z is a nonunit and is primitive, that is, gcd(a, b) = 1. In this case, let w be
any Gaussian prime divisor of z. Then w|m and so w|m = m since m is real. As
w is a Gaussian prime that divides m = zn , we see that w|z. Unique factorization
immediately implies the following.
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Fact. If w is a Gaussian prime dividing z, and w and w are not associates, then
ww ∈ Z divides z.

As z is primitive, the fact implies that z is a product of Gaussian primes, each of which
is an associate of its conjugate. Let v = c + di be such a Gaussian prime factor of z.
As v and v are associates, we see that c = 0, d = 0, or c = ±d. The first two cases
are not possible, since z is primitive. The third case implies c = ±1 since v is prime.
It follows that v is an associate of 1 + i and z = u (1 + i)l for some unit u and natural
number l.

3. APPLICATIONS: ARCTANGENT IDENTITIES, TRIANGLES, GEO-
BOARDS, AND SMOOTH CURVES. The Main Lemma in the previous section
has several applications which are presented below. Throughout this section k ∈ Z and
n ∈ N.

Corollary 1. The only rational values of tan kπ/n are 0 and ±1.

Proof. Suppose tan kπ/n = b/a where b ∈ Z and a ∈ N. Then

kπ

n
= arg (a + ib) ⇒ kπ = arg (a + ib)n ⇒ (a + ib)n ∈ Z

and so every argument of a + ib, namely kπ/n, is an integer multiple of π/4 by the
Main Lemma. The result follows.

We now come to the nonexistence result on single-angle arctangent identities for π

stated in the introduction.

Corollary 2. Identities of the form kπ = n arctan x with x rational have x = 0 or
x = ±1. In particular, π = 4 arctan 1 is the most efficient such identity for computing
π using Gregory’s series.

Proof. Given kπ/n = arctan x , apply tan and use the previous corollary.

Multiple-angle rational arctangent identities for π have the form

kπ

n
=

l∑
j=1

m j arctan
b j

a j
(2)

where all variables are rational integers. It is natural to assume, without loss of gener-
ality, that n ∈ N, gcd (k, n) = 1, gcd (m1, . . . , ml) = 1, the values

∣∣b j/a j

∣∣ are distinct,
and that for all j : m j ∈ N, b j �= 0, a j ∈ N, and gcd

(
a j , b j

) = 1. Note that we allow
k = 0. Even though nontrivial identities exist with l ≥ 2, it turns out that one does not
obtain any new angles kπ/n over the l = 1 case.

Corollary 3. If (2) holds, then kπ/n = jπ/4 for some integer j . In particular, n = 1,
2, or 4.

Proof. Modulo 2π we have

kπ

n
=

l∑
j=1

m j arctan
b j

a j
=

l∑
j=1

m j arg
(
a j + ib j

) = arg
l∏

j=1

(
a j + ib j

)m j
.
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Let z denote the product above. Then zn is real and so arg z = kπ/n is a multiple of
π/4 by the Main Lemma. The result follows.

The reason nontrivial multiple-angle identities exist is quite simple. Let us look at
double-angle identities

kπ

n
= m1 arctan

b1

a1
+ m2 arctan

b2

a2
. (3)

Let z j = a j + ib j for j = 1, 2 and z = zm1
1 zm2

2 . Equation (3) implies that zn is real
(conversely, if

(
zm1

1 zm2
2

)n
is real, where z j = a j + ib j and a j �= 0 for j = 1, 2, then

one obtains an identity of the form (3) for some k ∈ Z). As zn is real, the proof of
the Main Lemma shows that if w ∈ Z [i] is a prime divisor of z, then w is as well.
The difference now, over the single-angle case, is that these conjugate primes may
appear separately in z1 and z2. An example is enlightening. Pick a prime, say 2 + i .
Letting z1 = 2 + i , z2 = 2 − i , and n = m1 = m2 = 1, we have zn = 5. However, the
corresponding arctangent identity is useless: 0π = arctan (1/2) + arctan (−1/2). So,
introduce a factor of 1 + i and let

z2 = (2 − i) (1 + i) = 3 + i

and, correspondingly, n = 4. Now zn = −2500 and the associated identity is

π

4
= arctan

1

2
+ arctan

1

3
.

It is instructive to take the arctangent identities from the introduction and produce their
associated Gaussian integer equations (factored into primes). The importance of units
and 1 + i should become apparent. Several questions arise, such as: are there useful
identities without factors of 1 + i in z1 or z2? A little tinkering yields

−78125 = [
(2 + i)7 (−1)

]1
[2 − i]7

where

(2 + i)7 = −278 − 29i

and correspondingly

−π = arctan
29

278
+ 7 arctan

−1

2
.

Thus useful identities without factors of 1 + i exist. At this point, modern students
should be well equipped to explore multiple-angle identities on their own using a com-
puter. The author highly advocates this personal form of discovery, since it is beneficial
and fun! The reader might enjoy finding an efficient identity and checking the litera-
ture to see if it is known. The bibliography lists much of the literature known to the
author.

The Main Lemma also has several applications to triangles. Say that an angle is
rational provided it is commensurable with a straight angle; equivalently, its degree
measure is rational or its radian measure is a rational multiple of π . Say that a side of
a triangle is rational provided its length is rational.
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Corollary 4. A right triangle with rational acute angles and rational legs is a 45-45-
90 triangle.

Proof. Suppose triangle 
ABC has a right angle at C , rational legs a and b opposite
the angles at A and B respectively, and the angle β at B is a rational multiple of
π . Then tan β = b/a is rational and equals +1 by Corollary 1 since side lengths are
positive. Therefore, β = π/4 and the result follows.

a

b
c

A

B C
β

Figure 4. Right triangle 
ABC .

Corollary 5. The acute angles in a right triangle with rational side lengths are never
rational.

Proof. Suppose triangle 
ABC has a right angle at C , rational side lengths a, b, and
c opposite the angles at A, B, and C respectively, and the angle β at B is a rational
multiple of π . The previous corollary implies a = b. The Pythagorean theorem implies
2a2 = c2, a familiar contradiction to unique factorization of rational integers.

In other words, every triangle whose side lengths form a Pythagorean triple has
acute angles of irrational degree measure, thus explaining why the angles of such
triangles are never emphasized in grade school. Stillwell used our approach to obtain
this result in [41, pp. 168–169].

Recall that a geoboard is a flat board containing pegs in a square lattice shape
(see Figure 5). Rubber bands are placed around collections of pegs to form polygons,
angles, and so forth. Common questions include whether one can build an equilateral
triangle, regular polygons in general, and certain angles on a geoboard. One has to
be a little careful here as shown on the right in Figure 5. Each straight segment S of
rubber band stretches between two pegs P1 and P2; if S is not parallel to the segment
connecting the centers of P1 and P2, then the angles and polygons one can build depend

Figure 5. Two 6 × 6 geoboards: admissible bands (left) and inadmissible bands (right).
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on the diameter of the pegs. For precision, one can make this parallel assumption, or
idealize and turn the pegs into points. We adopt the latter approach. Define a lattice
angle to be an angle formed by rays −→vw and −→vz where v, w, z ∈ Z [i] and v �= w, z
(see Figure 6).

v

z

w

Figure 6. A lattice angle.

Corollary 6. If a lattice angle is rational, then its measure is an integer multiple of
π/4.

Proof. Let the rays −→vw and −→vz form a rational lattice angle. Our tactic is to apply two
angle preserving algebraic transformations of Z [i] so that the Main Lemma applies
to the resulting congruent angle. First, translate by −v, which maps Z [i] into itself
and is an isometry of C; let w′ = w − v and z′ = z − v. Second, multiply by w′ �= 0,
which maps Z [i] into itself and is a similarity transformation. More specifically, this
second transformation rotates about 0 by arg w′ and scales all lengths by N

(
w′)1/2

; let

W = w′w′ and Z = z′w′. The angle formed by
−→
0W and

−→
0Z is rational, being congruent

to the original angle, and W > 0. Therefore, Zn is real for some natural number n. The
result follows by the Main Lemma.

v

w

z

0
z'

w'

0

Z

W
–v ×w'

Figure 7. Translation by −v and multiplication by w′.

For precision, let us take a moment to define relevant terms concerning polygons.
A polygon consists of n ≥ 3 vertices p1, p2, . . . , pn in the plane C, along with the
segments p1 p2, p2 p3, . . . , pn−1 pn, pn p1 called edges; we further assume two natural
nondegeneracy conditions: consecutive vertices are distinct (no edge is a point) and
consecutive triples of vertices are not collinear. A lattice polygon has vertices that are
Gaussian integers. A polygon is simple provided only consecutive edges intersect and
only at their single common vertex. A polygon is equilateral provided each of its edges
has the same length. A pair of consecutive edges intersecting at p j defines a vertex
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angle whose measure α j we take to lie in (0, π). A polygon is equiangular provided
each vertex angle has the same measure and, moreover, these angles all turn the same
way, either all clockwise or all counterclockwise, as one traverses the polygon along
consecutive edges. A polygon is regular provided it is equilateral and equiangular. A
regular star is a regular polygon that is not simple, as in Figure 8.

p1 p2

p3

p4

p5p6

p7

p8

Figure 8. A regular star.

Claim. A regular polygon, not necessarily simple or lattice, has rational vertex angles.

Proof. Let P be a regular polygon in C with n vertices p1, p2, . . . , pn . Translate and
rotate so that p1 = 0 and p2 = r > 0. Let 0 < α < π denote the measure of each
vertex angle and θ = π − α. Then

p2 − p1 = r,

p3 − p2 = reiθ ,

p4 − p3 = rei2θ ,

...

pn − pn−1 = rei(n−2)θ , and

p1 − pn = rei(n−1)θ .

Add these n equations and let x = exp(iθ) to obtain

0 = r
(
1 + x + x2 + x3 + · · · + xn−1

)
.

p1 p2

p3

p4

θ

θ

θ

r

rei
 
θ

rei
 
2θ

α α

α

α

Figure 9. Regular polygon P .
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Multiplying by (x − 1)/r yields 0 = xn − 1. Therefore, x = exp(iθ) is an nth root
of unity, θ = 2πk/n for some k satisfying 0 < k < n/2 (since 0 < θ < π), and α =
π(n − 2k)/n is a rational multiple of π , as desired.

Corollary 7. The only regular lattice polygon is a square. In particular, there does
not exist a regular lattice star.

Proof. Let P be a regular lattice polygon with vertex angles of measure α, 0 < α < π .
By the previous claim, α is a rational multiple of π . The previous corollary implies that
α = π/4, π/2, or 3π/4. Clearly α = π/2 yields a square, which exists (in many ways)
as a regular lattice polygon. It remains to rule out the other two possibilities. Let p1

and p2 be adjacent vertices in P . Translation by the Gaussian integer −p1 allows us
to assume p1 = 0. Multiply by the Gaussian integer p2 so that an adjacent vertex is on
the positive real axis (all lengths scale by N(p2)

1/2). After a possible reflection across
the real axis, the resulting lattice polygon P ′, which is similar to P , appears as in
Figure 10. In either case, the triangle T with vertices 0, z, and Rez + 0i is a lattice
45-45-90 triangle. Clearly T has rational (integer, in fact) legs. As P ′ is equilateral,
the hypotenuse of T is congruent to 0w and so has integral length. This contradicts
Corollary 5 and completes the proof.

z

z

w w

Figure 10. Lattice polygon P ′ with α = π/4 (left) and α = 3π/4 (right).

The previous two corollaries apply to angles and polygons whose vertices lie in
Q × Q. A central expansion by the least common multiple of the denominators of the
coordinates of the vertices yields a similar figure with coordinates in Z × Z, which is
naturally regarded as a figure in Z [i].

We close this section with a seemingly unrelated application. Let X be the space
obtained from the unit square [0, 1]2 ⊂ R2 by deleting all points with both coordinates
rational except (0, 0) and (1, 1). Question: can (0, 0) and (1, 1) be connected by a con-
tinuous path in X? The answer is yes, and in fact the Baire category theorem implies
the existence of a smooth (infinitely differentiable) path in X from (0, 0) to (1, 1). We
give an explicit example.

Corollary 8. There is a smooth and simple path in X from (0, 0) to (1, 1).

Proof. Define γ : [0, 1] → [0, 1]2 by γ (t) = (t, (4/π) arctan t). If the image of γ

contains a rational point, then y = (4/π) arctan t is rational for some rational t ∈
[0, 1]. This implies t = tan yπ/4 is rational and t = 0 or t = 1 by Corollary 1. There-
fore, γ is a smooth (in fact, analytic) path in X as desired.

The reader may enjoy producing more such paths, for example using any transcen-
dental number α > 0.
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4. CONCLUDING REMARKS. The Gregory series for arctan x appears to have
been discovered by the Indian mathematician and astronomer Mādhava in the 14th
century [17]. It was rediscovered by Gregory in 1671 and by Leibniz in 1674 [52,
p. 527]. Convergence of the series for |x | < 1 is straightforward and one employs
Abel’s theorem [32, pp. 174–175] to conclude agreement with arctan x at the endpoints
x = ±1. Alternatively, one may integrate from 0 to x the identity

1 − t2 + t4 − · · · + (−1)k−1t2k−2 = 1

1 + t2
− (−1)k t2k

1 + t2

and note that the remainder integral tends to 0 as k tends to infinity precisely when
|x | ≤ 1.

Mādhava also discovered Leibniz’s series (x = 1 in Gregory’s series) in the 14th
century and formulated correction terms for the nth partial sum [18]. Leibniz redis-
covered the series in 1674 and published it in 1682; Gregory did not publish the series,
although undoubtedly he was aware of it [3, pp. 132–133]. In 1730, Stirling applied
transformation methods to Leibniz’s series to obtain more efficient series which he
used to compute π/4 correctly to 10 and 17 decimals [47, pp. 183–185, 223–225].

There exist other (non-Taylor) series for arctan x , notably Euler’s [55] and Castel-
lanos’s series [11, p. 85] (see also [37, p. 77]). As with Gregory’s series, they too
benefit convergence-wise from arguments of small absolute value.

Arctangent identities were originally discovered using (co)tangent angle addition
formulas, one of which is attributed to C. L. Dodgson (Lewis Carroll) [53, Sec. 2].
Newton’s 1676 identity in Section 1 is the earliest nontrivial arctangent identity for π

known to the author and may be the first ever [48, p. 2].

In the 1800s, the number theory of the (later named) Gaussian integers revolution-
ized the search for these identities. In 1894, Dmitry A. Grave [16] published a problem
requesting all rational integer solutions to

π

4
= m arctan

1

p
+ n arctan

1

q
. (4)

Störmer took up Grave’s problem, which had already been posed by Euler [44, p. 3],
[42, p. 160]. Störmer solved the a priori more general

k
π

4
= m arctan

1

x
+ n arctan

1

y
(5)

over the rational integers [43, 44, 42]. (A gap in Störmer’s proof was filled by Ljung-
gren in 1942 [30, p. 141].) Assuming that k, m, n ≥ 0, x �= ±y, x �= ±1, y �= ±1, and
gcd(m, n) = 1, equation (5) has four solutions, namely

π

4
= arctan

1

2
+ arctan

1

3
, (Machin, 1706 [48, p. 7]) (6)

π

4
= 2 arctan

1

2
+ arctan

1

−7
, (Machin, 1706 [48, p. 7]) (7)

π

4
= 2 arctan

1

3
+ arctan

1

7
, and (Machin, 1706 [48, p. 7]) (8)

π

4
= 4 arctan

1

5
+ arctan

1

−239
. (Machin, 1706 [20, 48]) (9)
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Commonly, (6)–(8) are erroneously attributed to L. Euler in 1737, J. Hermann in 1706,
and C. Hutton in 1776, respectively (see [6, p. 345], [23, p. 662], [55, p. 645], and [11,
pp. 92, 94]). However, John Machin had already discovered (6)–(9) in 1706 [48], [46,
pp. 64–66, 105–111]. Moreover, Robert Simson in 1723 had already discovered the
last identity in Section 1, which is commonly attributed to Klingenstierna in 1730 [48,
p. 10]. Indeed, Ian Tweddle’s overlooked historical gem [48] vindicates the logical
mind as it is unfathomable that (9) was discovered 31 years prior to (6). Newton’s ear-
lier 1676 identity is considerably inferior to all of Machin’s formulas and was commu-
nicated without proof [48, p. 2]. Thus, we are led to believe that Newton was unaware
of formulas (6)–(9) in 1676. Still, it would be surprising if (6) were not known prior to
1706, although the author knows no reference.

Störmer remarked that after completing his 1894 work he found that Gauss had al-
ready observed the connection between “complex integers and the arc-tangents” [44,
p. 11]. Gauss’s work is described in Schering’s Comments section concluding Gauss’s
second volume of Werke [15, pp. 496–502]. Gauss used extensive tables and factoriza-
tions of “Gaussian integers” to obtain identities such as

π

4
= 12 arctan

1

18
+ 8 arctan

1

57
− 5 arctan

1

239
(Gauss, 1863 [15, p. 501])

which is the best three-term identity of the form (2) with b1 = b2 = b3 = 1 [13].
Störmer’s work was more systematic and thorough than Gauss’s. In fact, Schering [15,
pp. 499–500] states that “the developments coming from this which can be found in
the written notes are not very expansive and what follows are the ones that went the
farthest.” For further reading on multiple-term arctangent identities see [53, 54, 23, 12,
13].

The fact (Corollary 2) that

kπ = n arctan
b

a
(10)

has only the obvious rational integer solutions, namely b = 0 or b/a = ±1, was appar-
ently first published by Störmer [44, pp. 26–27], [42, pp. 162–163]. His latter proof is
similar in spirit to our proof of the Main Lemma (see also [45, pp. 166–167]). Störmer
writes (10) in the form

ρ arctan
b

a
= k

π

4
(11)

and assumes that ρ and k are positive, gcd(ρ, k) = 1, and gcd(a, b) = 1. The factor
of 4 in the denominator appears throughout the work of Grave, Gauss, Störmer, and
others, both in single- and multi-term identities (for instance, see (4) and (5) above).
This 4 causes no loss of generality, as one must verify in each proof, and is included
so that the associated Gaussian integer equation has (1 + i)k on one side. However,
Corollary 3 above shows very naturally that, in fact, rational arctangent identities in
general may only realize integer multiples of π/4.

Another approach to Corollary 1 is to show that the only rational roots of the rational
functions tan (k arctan x), k ∈ N, are x = 0 and x = ±1. These rational functions are
the tangent analogues of the Chebyshev polynomials of the first kind for cosine. They
were known to John Bernoulli as early as 1712 [39, pp. 193–195] and appear in Eu-
ler’s 1748 work [14, §249] (see also [48, p. 8]). The author independently discovered
these rational functions and proved Corollaries 1 and 2 as an undergraduate after an
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unsuccessful computer search for a useful single-term identity [9]. Several other math-
ematicians have used these rational functions to prove Corollary 1, notably Underwood
[49, 50, 51] (see also Richmond [31]), Olmsted [28], which is terse but correct, and
Carlitz and Thomas [10]. The existence of these elementary non-Gaussian integer ap-
proaches, along with Störmer’s remark that Euler had posed (4) before Grave, leads us
to suspect that Euler may have had a proof of Corollary 1. Using unique factorization
in certain polynomial rings, one may go farther than Corollary 1 and determine the
algebraic degree of tan kπ/n over Q [26, Ch. 3].

The 20th century brought the electronic computer, the calculation of π to 100,000
decimals by Shanks and Wrench on July 29, 1961 [37] using arctangent identities, and,
in an interesting twist, the calculation of identities themselves using the computer by
Wetherfield and Chien-Lih beginning in the 1990s [53, 12, 13]. The calculation of π

flourished in other interesting directions as well [8, 6, 1, 7]. For example, there exist
certain formulas for computing isolated digits of π in certain bases that are powers of
two and no other bases [1, 5]. Nevertheless, the utility of rational arctangent identi-
ties remains, as shown by Kanada’s record-holding calculation of π to 1.2411 trillion
decimals in December 2002 [21] using the self-checking pair

π

4
= 44 arctan

1

57
+ 7 arctan

1

239
− 12 arctan

1

682
+ 24 arctan

1

12943
(12)

and
π

4
= 12 arctan

1

49
+ 32 arctan

1

57
− 5 arctan

1

239
+ 12 arctan

1

110443
. (13)

Equation (12) is due to Störmer in 1896 [44, p. 85] and (13) is due to Kikuo Takano in
1982 [21, 7]. Lehmer introduced a natural measure of the efficiency of an arctangent
identity for π in 1938 [23] which yields the compound measure of a pair of identi-
ties [13]. For the compound measure of the above and other self-checking pairs, see
[13] where the Störmer-Takano pair (12)–(13) is listed under “Self-checking pairs of
identities incorporating six distinct cotangent values.”

Questions concerning polygons on geoboards and more general lattices have been
well studied. These problems are particularly accessible to young students and admit
a variety of elementary solutions. For the nonexistence of an equilateral triangle on a
geoboard see [24], [19, pp. 4, 58], [29], [2, pp. 119–120], [36, p. 761] and [4, pp. 250–
251]. We cannot resist presenting another solution (compare the proof of Corollary
6): suppose v, w, z ∈ Z [i] are the vertices of an equilateral triangle; translation by
−v shows we may assume v = 0; multiplication by w shows we may further assume
w ∈ Z+; but then (w/2)

√
3 = Imz ∈ Z, a contradiction.

For regular polygons on a geoboard and higher-dimensional lattices see [34, pp. 49–
50], [33], [22], [35], [4], [25], and [27]. Note that, contrary to [27, bottom of p. 50],
any proof for the integral lattice immediately implies the result for rational coordinates
(see the paragraph following Corollary 7 above). Scherrer’s 1946 infinite-descent non-
existence proof of a simple regular polygon with n �= 3, 4, or 6 sides on any lattice is
short and ingenious [33] (or see [19, pp. 4, 58], [36, pp. 761–762] or [4, p. 251]).
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Buel on Mathematics

“If time is of no consequence, and a fortune is already in your hands, study
mathematics, because in them will be found an excellent training for the mind,
but if you are a young man compelled to make your own way in the world, and
particularly if you are not endowed with the mathematical gift, it is altogether
probable that you will find sawing wood more profitable than studying these top-
lofty branches, where the fruit is extremely difficult to pluck, and often of poor
flavor, especially when gathered by a man who has neither craft nor profession.”

J. W. Buel, Buel’s Manual of Self Help,
National Book Concern, Chicago, 1894, p. 69.

—Submitted by Adam Kleppner, Wardsboro, VT
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