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Quasi-polynomials

Definition: g : N→ N is a quasi-polynomial of period m if there
exist polynomials g0, g1, . . . , gm−1 such that

g(t) = gt mod m(t),∀t ∈ N.

Example: For t ∈ N, let

St = {x ∈ N : 1 ≤ 2x ≤ t} = {1, 2, . . . , bt/2c}.

Then

|St | =
⌊ t

2

⌋
=

{
t/2, if t mod 2 = 0,

(t − 1)/2, if t mod 2 = 1.
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A Triangle

Let P be the triangle with vertices (0, 0), (1/2, 0), and (1/2, 1).

Let St = tP ∩ Z2, for t ∈ N.
What is |St |, as a function of t?

t = 1 : t = 2 : t = 3 : t = 4 :
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A Triangle

The hard (but insightful) way to
calculate |St |:

Definition: The generating function
for S ⊆ Z2 is given by

f (S ; x , y) =
∑

(c,d)∈S

xcyd .

Example:

f (S3; x , y) = x0y0+x1y0+x1y1+x1y2.

Let’s find f (St ; x , y).
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A Triangle

Let’s first find f (S ; x , y) for this set.



A Triangle

f (S ; x , y) =

(x0y0 + x1y1)

· (1 + x1 + x2 + x3 + · · · )
· (1 + (x1y2)1 + (x1y2)2 + · · · )

=
1 + xy

(1− x)(1− xy2)

x4y5 = x1y1(x)1(x1y2)2

x4y2 = x0y0(x)3(x1y2)1
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A Triangle

Let k = bt/2c.

−xk+1y0

· (1 + x + x2 + · · · )
· (1 + y + y2 + · · · )

=− xk+1

(1− x)(1− y)

Only the vertex of the cone depends
on t.



A Triangle

1 + xy

(1− x)(1− xy2)

− xk+1

(1− x)(1− y)



A Triangle

+xk+1y2(k+1)+1

· (1 + xy2 + (xy2)2 + · · · )
· (1 + y + y2 + · · · )

=
xk+1y2k+3

(1− xy2)(1− y)



A Triangle

f (St ; x , y) =

1 + xy

(1− x)(1− xy2)

− xk+1

(1− x)(1− y)

+
xk+1y2k+3

(1− xy2)(1− y)
.



A Triangle

f (St ; x , y) =
1 + xy

(1− x)(1− xy2)
− xk+1

(1− x)(1− y)
+

xk+1y2k+3

(1− xy2)(1− y)
.

f (St ; 1, 1) =
∑

(c,d)∈St

1c1d = |St |.

So plug in x = 1, y = 1!

Uh oh.
Take limit as (x , y)→ (1, 1), e.g, get common denominator, then
repeated L’Hôpital’s rule, one variable at a time:

|St | = (k + 1)2 = (bt/2c+ 1)2 .
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repeated L’Hôpital’s rule, one variable at a time:

|St | = (k + 1)2 = (bt/2c+ 1)2 .



A Triangle

f (St ; x , y) =
1 + xy

(1− x)(1− xy2)
− xk+1

(1− x)(1− y)
+

xk+1y2k+3

(1− xy2)(1− y)
.

f (St ; 1, 1) =
∑

(c,d)∈St

1c1d = |St |.

So plug in x = 1, y = 1!
Uh oh.

Take limit as (x , y)→ (1, 1), e.g, get common denominator, then
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repeated L’Hôpital’s rule, one variable at a time:

|St | = (k + 1)2 = (bt/2c+ 1)2 .



A Triangle

f (St ; x , y) =
1 + xy

(1− x)(1− xy2)
− xk+1

(1− x)(1− y)
+

xk+1y2k+3

(1− xy2)(1− y)
.

f (St ; 1, 1) =
∑

(c,d)∈St

1c1d = |St |.

So plug in x = 1, y = 1!
Uh oh.
Take limit as (x , y)→ (1, 1), e.g, get common denominator, then
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Parametric Polyhedra

Definition: A parametric polyhedron, Pt ⊆ Rd , is the solution set
to a system of linear inequalities of the form

a1x1 + · · ·+ adxd ≤ bt + c .

Theorem (Ehrhart, McMullen, Brion, Barvinok)

|Pt ∩ Zd | agrees with a quasi-polynomial, for sufficiently large t.

I Inclusion-exclusion on generating functions reduces to cones.

I Cones simply translate with t.

I Generating function of such a cone is easy.

I Compute f (S ; 1, . . . , 1) with L’Hôpital’s rule.
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Parametric Polyhedra

Example: Let R = k[x1, x2, x3], graded so that deg xi = ai .

f (t) : = dimk{p ∈ R : p homogeneous of degree t}

=
∣∣∣{xλ11 xλ22 xλ33 of degree t}

∣∣∣
=
∣∣∣{(λ1, λ2, λ3) ∈ Z3 : λi ≥ 0, a1λ1 + a2λ2 + a3λ3 = t}

∣∣∣
is a quasi-polynomial [Hilbert].
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Boolean Operations
Our Example:

(x , y) ∈ Z2 : (y ≥ 0) ∧ (2x ≤ t) ∧ (y − 2x ≤ 0)

t = 1 : t = 2 : t = 3 : t = 4 :

How about allowing other Boolean operations like ∨ (or)?

No problem [Barvinok–Pommersheim].
For example, Disjunctive Normal Form yields union of parametric
polyhedra:

A ∧ (B ∨ C ∨ D) is (A ∧ B) ∨ (A ∧ C ) ∨ (A ∧ D).
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Boolean Operations

Let G be this graph:

Let χG (t) be the number of ways to color the vertices of G with t
possible colors, so that no adjacent vertices have the same color.
Then χG (t) = t(t − 1)2, a polynomial.

If xa, xb, xc are the colors of a, b, and c , then

I 1 ≤ xa, xb, xc ≤ t,

I xa 6= xb and xb 6= xc ,

a Boolean combination of linear (in)equalities.
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Boolean Operations

Fill a 3× 3 square with distinct positive integers such that the sum
of every row, column, and two main diagonals are all exactly t.

If t ≡ 6 (mod 18), for example, then there are 2
9(t − 6)(t − 10)

ways to do this [Beck–Zaslavsky]. A quasi-polynomial!

If xij is the number in the ith row and jth column,

I We require x11 6= x12 and so on,

I x11 + x12 + x13 = t and so on,

a Boolean combination of linear (in)equalities.
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Boolean Operations

How many ways are there to place three queens on a t × t board
such that no two queens are attacking each other? There are

t6

6
− 5t5

3
+

79t4

12
− 25t3

2
+ 11t2 − 43t

12
+

1

8
+ (−1)t

(
t

4
− 1

8

)
ways, a quasi-polynomial of period 2 [Chaiken–Hanusa–Zaslavsky].
Suppose we place Queen i at position (xi , yi ) ∈ Z2 where
1 ≤ xi , yi ≤ t. Then

I x1 6= x2 says that the first two queens can’t be in the same
row,

I x1 − y1 6= x2 − y2 says they cannot be along one of the same
diagonals, and so on,

a Boolean combination of linear (in)equalities.
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ways, a quasi-polynomial of period 2 [Chaiken–Hanusa–Zaslavsky].
Suppose we place Queen i at position (xi , yi ) ∈ Z2 where
1 ≤ xi , yi ≤ t. Then

I x1 6= x2 says that the first two queens can’t be in the same
row,

I x1 − y1 6= x2 − y2 says they cannot be along one of the same
diagonals, and so on,

a Boolean combination of linear (in)equalities.
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Multiple Parameters

Let’s get greedy and go further: How about adding more
parameter variables than simply t?

No problem [Barvinok–Pommersheim, W], with one new wrinkle:

{a, b ∈ Z : a ≥ 0, b ≥ 0, 2b − a ≤ 2t − s, a− b ≤ s − t}.

t ≤ s ≤ 2t

0 ≤ 2t ≤ s 0 ≤ s ≤ t
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Multiple Parameters

t ≤ s ≤ 2t 0 ≤ 2t ≤ s 0 ≤ s ≤ t

As the combinatorial type changes, the inclusion-exclusion of cones
changes. But for all polyhedra of the same combinatorial type,
we’re just in the same old setup.

End up with

c(s, t) =


s2

2 − b
s
2cs + s

2 + b s2c
2 + b s2c+ 1, if t ≤ s ≤ 2t,

st − b s2cs −
t2

2 + t
2 + b s2c

2 + b s2c+ 1, if 0 ≤ 2t ≤ s,
t2

2 + 3t
2 + 1, if 0 ≤ s ≤ t,

a piecewise-defined quasi-polynomial.
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Quantifiers

Let’s get greedy and go further: “Boolean operations” sounds like
logic. How about adding quantifiers (∃, ∀)?

No problem [W].

I Quantifiers can be eliminated [Presburger], by also allowing
the mod k operation, for constants k :{

x ∈ N : ∃y ∈ N, x = 3y + 1} =
{
x ∈ N : x = 1 mod 3

}
.

I mod plays nicely with generating functions:

S = {1, 4, 7, . . .}, f (S ; x) = x1 + x4 + x7 + · · · =
x

1− x3
.
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Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x5], that is, the semigroup generated by 3 and 5,

S = {0, 3, 5, 6, 8, 9, 10, . . .}
= {n ∈ Z : ∃x , y ∈ Z, (x ≥ 0) ∧ (y ≥ 0) ∧ (3x + 5y = n)}

We will eliminate one quantifier at a time, Starting with x .
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Quantifiers

S = {n ∈ Z : ∃x , y ∈ Z, (x ≥ 0) ∧ (y ≥ 0) ∧ (3x + 5y = n)}

If there exists any x satisfying this, then:

I It must be x = (n − 5y)/3,

I We must have 3
∣∣(n − 5y),

Substituting:

S =
{
n ∈ Z : ∃y ∈ Z, 3

∣∣(n − 5y) ∧
(
n − 5y

3
≥ 0

)
∧ (y ≥ 0)

}
=
{
n ∈ Z : ∃y ∈ Z, 3

∣∣(n − 5y) ∧ (5y ≤ n) ∧ (y ≥ 0)
}
.

The x ’s are gone! Now let’s eliminate y .
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S =
{
n ∈ Z : ∃y ∈ Z, 3

∣∣(n − 5y) ∧ (5y ≤ n) ∧ (y ≥ 0)
}
.

If there exists any y satisfying this, then:

I y ≥ 0,

I If y ≥ 3, then y − 3 also satisfies this,

I So either y = 0, y = 1, or y = 2 satisfies this.

Substitute these three options in for y and join with ∨’s:

S =
{
n ∈ Z :

(
3
∣∣n ∧ (0 ≤ n) ∧ (0 ≥ 0)

)
∨
(

3
∣∣(n − 5) ∧ (5 ≤ n) ∧ (1 ≥ 0)

)
∨
(

3
∣∣(n − 10) ∧ (10 ≤ n) ∧ (2 ≥ 0)

)
= {0, 3, 6, . . .} t {5, 8, 11, . . .} t {10, 13, 16, . . .}.

There are no quantifiers left!
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Presburger Arithmetic

Theorem (W)

Suppose F is a first-order formula over the integers, defined using
linear inequalities, Boolean operations, and quantifiers, that is, F is
a formula in Presburger arithmetic. Suppose the free
(unquantified) variables in F are c1, . . . cd (the counted variables)
and p1, . . . , pn (the parameter variables). Then

g(p1, . . . , pn) = #(c1, . . . , cd) making F true

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.
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A Twist

Let’s get greedy and go further. In what other settings do we still
end up with quasi-polynomial behavior? Here’s one:

I Require a single parameter, t.

I Allow multiplication by this parameter (but not by other
variables).

I So base inequalities are of the form

p1(t)x1 + · · ·+ pn(t)xn ≤ q(t),

where pi , q ∈ Z[t]. For fixed t, these are just linear
inequalities.

I As t changes, normal vectors can “twist”.

I Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t)
[Bogart–Goodrick–W].
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A Twist

Pt =
{

(x , y) ∈ R2 : − (t2 − 2t + 2) ≤ 2x + (2t − 2)y ≤ t2 − 2t + 2,

− (t2 − 2t + 2) ≤ (2− 2t)x + 2y ≤ t2 − 2t + 2
}

;

|Pt ∩ Z2| =

{
t2 − 2t + 2, if t odd,

t2 − 2t + 5, if t even.
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A Twist

Example: Let St be the degrees not appearing in k
[
x t , x t+1, x t+3

]
.

St = {n ∈ Z : @a, b, c ∈ Z, a, b, c ≥ 0, ta+(t+1)b+(t+3)c = n}.

Then

|St | =


1
6 t

2 + 1
2 t, if t ≡ 0 (mod 3),

1
6 t

2 + 1
2 t −

2
3 , if t ≡ 1 (mod 3),

1
6 t

2 + 1
2 t −

2
3 if t ≡ 2 (mod 3).
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How Far is Too Far?

Let’s get greedy and go further.

I Two nonlinear parameters is too far:

Ss,t = {(x , y) ∈ Z : x , y ≥ 0, sx + ty = st}
= the interval between (0, s) and (t, 0).

|Ss,t | = gcd(s, t) + 1, not a quasi-polynomial.

I Nonlinearity in other variables is too far:

St = {x ∈ Z : ∃y ∈ Z, x , y ≥ 0, xy = t}
= {x ∈ Z : x

∣∣t}
|St | = the number of divisors of t, not a quasi-polynomial.
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Stay Greedy!

There is a cottage industry of finding examples that seem to have
bad nonlinearity, and finding ways to preprocess so that they fit in
this Presburger umbrella:

I Integer hull of a parametric polyhedron, conv(Pt ∩ Zd)
[Calegari–Walker],

I Shortest Vector Problem in sublattices of Zd described by a
basis with polynomial (in t) coordinates
[Bogart–Goodrick–W],

I Local cohomology of powers of ideals, H i
m(R/I t), and other

families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader
settings where quasi-polynomial behavior is guaranteed?
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Thank You!

To see more details, check out:
Bogart–W, A plethora of polynomials: a toolbox for counting
problems, The American Mathematical Monthly (2022),
and references therein.


