A Plethora of Polynomials: A Toolbox for Counting Problems using Presburger Arithmetic

Kevin Woods
Oberlin College

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2, & \text { if } t \bmod 2=0 \\ (t-1) / 2, & \text { if } t \bmod 2=1\end{cases}
$$

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2, & \text { if } t \bmod 2=0 \\ (t-1) / 2, & \text { if } t \bmod 2=1\end{cases}
$$

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2, & \text { if } t \bmod 2=0 \\ (t-1) / 2, & \text { if } t \bmod 2=1\end{cases}
$$

A Triangle

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

A Triangle

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

A Triangle

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

A Triangle

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d} .
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

A Triangle

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d} .
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

A Triangle

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d} .
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

A Triangle

Let's first find $f(S ; x, y)$ for this set.

A Triangle

$$
\begin{aligned}
& f(S ; x, y)= \\
& \left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& \cdot\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& \\
& x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2}
\end{aligned}
$$

A Triangle

$$
\begin{aligned}
& f(S ; x, y)= \\
& \left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& \cdot\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& \\
& x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2} \\
& x^{4} y^{2}=x^{0} y^{0}(x)^{3}\left(x^{1} y^{2}\right)^{1}
\end{aligned}
$$

A Triangle

$$
\begin{aligned}
& f(S ; x, y)= \\
& \quad\left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \quad \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& =\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& (1-x)\left(1-x y^{2}\right) \\
& \quad x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2} \\
& \quad x^{4} y^{2}=x^{0} y^{0}(x)^{3}\left(x^{1} y^{2}\right)^{1}
\end{aligned}
$$

A Triangle

$$
\begin{aligned}
& \text { Let } k=\lfloor t / 2\rfloor . \\
& \qquad \begin{aligned}
- & x^{k+1} y^{0} \\
& \cdot\left(1+x+x^{2}+\cdots\right) \\
& \cdot\left(1+y+y^{2}+\cdots\right) \\
= & -\frac{x^{k+1}}{(1-x)(1-y)}
\end{aligned}
\end{aligned}
$$

Only the vertex of the cone depends on t.

A Triangle

$$
\begin{aligned}
& \frac{1+x y}{(1-x)\left(1-x y^{2}\right)} \\
& -\frac{x^{k+1}}{(1-x)(1-y)}
\end{aligned}
$$

A Triangle

$$
\begin{aligned}
& +x^{k+1} y^{2(k+1)+1} \\
& \quad \cdot\left(1+x y^{2}+\left(x y^{2}\right)^{2}+\cdots\right) \\
& \quad \cdot\left(1+y+y^{2}+\cdots\right) \\
& =\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)}
\end{aligned}
$$

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)= \\
\frac{1+x y}{(1-x)\left(1-x y^{2}\right)} \\
-\frac{x^{k+1}}{(1-x)(1-y)} \\
+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} .
\end{gathered}
$$

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!
Uh oh.

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!
Uh oh.
Take limit as $(x, y) \rightarrow(1,1)$, e.g, get common denominator, then repeated L'Hôpital's rule, one variable at a time:

$$
\left|S_{t}\right|=(k+1)^{2}=(\lfloor t / 2\rfloor+1)^{2} .
$$

A Triangle

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!
Uh oh.
Take limit as $(x, y) \rightarrow(1,1)$, e.g, get common denominator, then repeated L'Hôpital's rule, one variable at a time:

$$
\left|S_{t}\right|=(k+1)^{2}=(\lfloor t / 2\rfloor+1)^{2} .
$$

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c .
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c .
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c .
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c .
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c .
$$

Theorem (Ehrhart, McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Parametric Polyhedra

Example: Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$, graded so that $\operatorname{deg} x_{i}=a_{i}$.

$$
\begin{aligned}
f(t): & =\operatorname{dim}_{k}\{p \in R: p \text { homogeneous of degree } t\} \\
& =\mid\left\{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \text { of degree } t\right\} \mid \\
& =\left|\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}: \lambda_{i} \geq 0, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}=t\right\}\right|
\end{aligned}
$$

is a quasi-polynomial [Hilbert].

Parametric Polyhedra

Example: Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$, graded so that $\operatorname{deg} x_{i}=a_{i}$.

$$
\begin{aligned}
f(t): & =\operatorname{dim}_{k}\{p \in R: p \text { homogeneous of degree } t\} \\
& =\mid\left\{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \text { of degree } t\right\} \mid \\
& =\left|\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}: \lambda_{i} \geq 0, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}=t\right\}\right|
\end{aligned}
$$

is a quasi-polynomial [Hilbert].

Parametric Polyhedra

Example: Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$, graded so that $\operatorname{deg} x_{i}=a_{i}$.

$$
\begin{aligned}
& f(t): \\
&=\operatorname{dim}_{k}\{p \in R: p \text { homogeneous of degree } t\} \\
&=\mid\left\{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \text { of degree } t\right\} \mid \\
&=\left|\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}: \lambda_{i} \geq 0, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}=t\right\}\right|
\end{aligned}
$$

is a quasi-polynomial [Hilbert].

Parametric Polyhedra

Example: Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$, graded so that $\operatorname{deg} x_{i}=a_{i}$.

$$
\begin{aligned}
& f(t): \\
&=\operatorname{dim}_{k}\{p \in R: p \text { homogeneous of degree } t\} \\
&=\mid\left\{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \text { of degree } t\right\} \mid \\
&=\left|\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}: \lambda_{i} \geq 0, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}=t\right\}\right|
\end{aligned}
$$

is a quasi-polynomial [Hilbert].

Parametric Polyhedra

Example: Let $R=k\left[x_{1}, x_{2}, x_{3}\right]$, graded so that $\operatorname{deg} x_{i}=a_{i}$.

$$
\begin{aligned}
f(t): & =\operatorname{dim}_{k}\{p \in R: p \text { homogeneous of degree } t\} \\
& =\mid\left\{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \text { of degree } t\right\} \mid \\
& =\left|\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{Z}^{3}: \lambda_{i} \geq 0, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}=t\right\}\right|
\end{aligned}
$$

is a quasi-polynomial [Hilbert].

Boolean Operations

Our Example:

$$
(x, y) \in \mathbb{Z}^{2}:(y \geq 0) \wedge(2 x \leq t) \wedge(y-2 x \leq 0)
$$

How about allowing other Boolean operations like \vee (or)?

Boolean Operations

Our Example:

$$
(x, y) \in \mathbb{Z}^{2}:(y \geq 0) \wedge(2 x \leq t) \wedge(y-2 x \leq 0)
$$

How about allowing other Boolean operations like \vee (or)?
No problem [Barvinok-Pommersheim].
For example, Disjunctive Normal Form yields union of parametric polyhedra:

$$
A \wedge(B \vee C \vee D) \quad \text { is } \quad(A \wedge B) \vee(A \wedge C) \vee(A \wedge D)
$$

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Let G be this graph:

Let $\chi_{G}(t)$ be the number of ways to color the vertices of G with t possible colors, so that no adjacent vertices have the same color. Then $\chi_{G}(t)=t(t-1)^{2}$, a polynomial.

If x_{a}, x_{b}, x_{c} are the colors of a, b, and c, then

- $1 \leq x_{a}, x_{b}, x_{c} \leq t$,
- $x_{a} \neq x_{b}$ and $x_{b} \neq x_{c}$,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

12	1	11
7	8	9
5	15	4

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

12	1	11
7	8	9
5	15	4

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

12	1	11
7	8	9
5	15	4

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

12	1	11
7	8	9
5	15	4

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

Fill a 3×3 square with distinct positive integers such that the sum of every row, column, and two main diagonals are all exactly t.

12	1	11
7	8	9
5	15	4

If $t \equiv 6(\bmod 18)$, for example, then there are $\frac{2}{9}(t-6)(t-10)$ ways to do this [Beck-Zaslavsky]. A quasi-polynomial!

If $x_{i j}$ is the number in the i th row and j th column,

- We require $x_{11} \neq x_{12}$ and so on,
- $x_{11}+x_{12}+x_{13}=t$ and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Boolean Operations

How many ways are there to place three queens on a $t \times t$ board such that no two queens are attacking each other? There are

$$
\frac{t^{6}}{6}-\frac{5 t^{5}}{3}+\frac{79 t^{4}}{12}-\frac{25 t^{3}}{2}+11 t^{2}-\frac{43 t}{12}+\frac{1}{8}+(-1)^{t}\left(\frac{t}{4}-\frac{1}{8}\right)
$$

ways, a quasi-polynomial of period 2 [Chaiken-Hanusa-Zaslavsky]. Suppose we place Queen i at position $\left(x_{i}, y_{i}\right) \in \mathbb{Z}^{2}$ where $1 \leq x_{i}, y_{i} \leq t$. Then

- $x_{1} \neq x_{2}$ says that the first two queens can't be in the same row,
- $x_{1}-y_{1} \neq x_{2}-y_{2}$ says they cannot be along one of the same diagonals, and so on,
a Boolean combination of linear (in)equalities.

Multiple Parameters

Let's get greedy and go further: How about adding more parameter variables than simply t ?

Multiple Parameters

Let's get greedy and go further: How about adding more parameter variables than simply t ?

No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\}
$$

Multiple Parameters

Let's get greedy and go further: How about adding more parameter variables than simply t ?

No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\}
$$

Multiple Parameters

Let's get greedy and go further: How about adding more parameter variables than simply t ?

No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\}
$$

Multiple Parameters

As the combinatorial type changes, the inclusion-exclusion of cones changes. But for all polyhedra of the same combinatorial type, we're just in the same old setup.

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } 0 \leq 2 t \leq s, \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1, & \text { if } 0 \leq s \leq t\end{cases}
$$

a piecewise-defined quasi-polynomial.

Multiple Parameters

As the combinatorial type changes, the inclusion-exclusion of cones changes. But for all polyhedra of the same combinatorial type, we're just in the same old setup.

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } 0 \leq 2 t \leq s, \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1, & \text { if } 0 \leq s \leq t\end{cases}
$$

a piecewise-defined quasi-polynomial.

Multiple Parameters

As the combinatorial type changes, the inclusion-exclusion of cones changes. But for all polyhedra of the same combinatorial type, we're just in the same old setup.

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } t \leq s \leq 2 t, \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1, & \text { if } 0 \leq 2 t \leq s, \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1, & \text { if } 0 \leq s \leq t,\end{cases}
$$

a piecewise-defined quasi-polynomial.

Quantifiers

Let's get greedy and go further: "Boolean operations" sounds like logic. How about adding quantifiers (\exists, \forall) ?

Quantifiers

Let's get greedy and go further: "Boolean operations" sounds like logic. How about adding quantifiers (\exists, \forall) ?

No problem [W].

- Quantifiers can be eliminated [Presburger], by also allowing the $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}}
$$

Quantifiers

Let's get greedy and go further: "Boolean operations" sounds like logic. How about adding quantifiers (\exists, \forall) ?

No problem [W].

- Quantifiers can be eliminated [Presburger], by also allowing the $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}}
$$

Quantifiers

Let's get greedy and go further: "Boolean operations" sounds like logic. How about adding quantifiers (\exists, \forall) ?

No problem [W].

- Quantifiers can be eliminated [Presburger], by also allowing the $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}}
$$

Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees appearing in $k\left[x^{3}, x^{5}\right]$, that is, the semigroup generated by 3 and 5 ,

$$
\begin{aligned}
S & =\{0,3,5,6,8,9,10, \ldots\} \\
& =\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
\end{aligned}
$$

We will eliminate one quantifier at a time, Starting with x.

Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees appearing in $k\left[x^{3}, x^{5}\right]$, that is, the semigroup generated by 3 and 5 ,

$$
\begin{aligned}
S & =\{0,3,5,6,8,9,10, \ldots\} \\
& =\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
\end{aligned}
$$

We will eliminate one quantifier at a time, Starting with x.

Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees appearing in $k\left[x^{3}, x^{5}\right]$, that is, the semigroup generated by 3 and 5 ,

$$
\begin{aligned}
S & =\{0,3,5,6,8,9,10, \ldots\} \\
& =\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
\end{aligned}
$$

We will eliminate one quantifier at a time, Starting with x.

Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees appearing in $k\left[x^{3}, x^{5}\right]$, that is, the semigroup generated by 3 and 5 ,

$$
\begin{aligned}
S & =\{0,3,5,6,8,9,10, \ldots\} \\
& =\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
\end{aligned}
$$

We will eliminate one quantifier at a time, Starting with x.

Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees appearing in $k\left[x^{3}, x^{5}\right]$, that is, the semigroup generated by 3 and 5 ,

$$
\begin{aligned}
S & =\{0,3,5,6,8,9,10, \ldots\} \\
& =\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
\end{aligned}
$$

We will eliminate one quantifier at a time, Starting with x.

Quantifiers

$S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}$
If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists x, y \in \mathbb{Z},(x \geq 0) \wedge(y \geq 0) \wedge(3 x+5 y=n)\}
$$

If there exists any x satisfying this, then:

- It must be $x=(n-5 y) / 3$,
- We must have $3 \mid(n-5 y)$,

Substituting:

$$
\begin{aligned}
S & =\left\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \left\lvert\,(n-5 y) \wedge\left(\frac{n-5 y}{3} \geq 0\right) \wedge(y \geq 0)\right.\right\} \\
& =\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
\end{aligned}
$$

The x 's are gone! Now let's eliminate y.

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with \vee 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\} .
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\} .
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\} .
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n \wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\} .
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\} .
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Quantifiers

$$
S=\{n \in \mathbb{Z}: \exists y \in \mathbb{Z}, 3 \mid(n-5 y) \wedge(5 y \leq n) \wedge(y \geq 0)\}
$$

If there exists any y satisfying this, then:

- $y \geq 0$,
- If $y \geq 3$, then $y-3$ also satisfies this,
- So either $y=0, y=1$, or $y=2$ satisfies this.

Substitute these three options in for y and join with V 's:

$$
\begin{aligned}
& S=\{n \in \mathbb{Z}:(3 \mid n\wedge(0 \leq n) \wedge(0 \geq 0)) \\
& \vee(3 \mid(n-5) \wedge(5 \leq n) \wedge(1 \geq 0)) \\
& \vee(3 \mid(n-10) \wedge(10 \leq n) \wedge(2 \geq 0)) \\
&=\{0,3,6, \ldots\} \sqcup\{5,8,11, \ldots\} \sqcup\{10,13,16, \ldots\} .
\end{aligned}
$$

There are no quantifiers left!

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

Presburger Arithmetic

Theorem (W)
Suppose F is a first-order formula over the integers, defined using linear inequalities, Boolean operations, and quantifiers, that is, F is a formula in Presburger arithmetic. Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

Let's get greedy and go further. In what other settings do we still end up with quasi-polynomial behavior? Here's one:

- Require a single parameter, t.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed t, these are just linear inequalities.

- As t changes, normal vectors can "twist".
- Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t) [Bogart-Goodrick-W].

A Twist

$$
\begin{aligned}
P_{t}=\left\{(x, y) \in \mathbb{R}^{2}:\right. & -\left(t^{2}-2 t+2\right) \leq 2 x+(2 t-2) y \leq t^{2}-2 t+2, \\
& \left.-\left(t^{2}-2 t+2\right) \leq(2-2 t) x+2 y \leq t^{2}-2 t+2\right\} ;
\end{aligned}
$$

$$
\left|P_{t} \cap \mathbb{Z}^{2}\right|= \begin{cases}t^{2}-2 t+2, & \text { if } t \text { odd } \\ t^{2}-2 t+5, & \text { if } t \text { even }\end{cases}
$$

A Twist

$$
\begin{aligned}
& P_{t}=\left\{(x, y) \in \mathbb{R}^{2}:\right.-\left(t^{2}-2 t+2\right) \leq 2 x+(2 t-2) y \leq t^{2}-2 t+2, \\
&\left.-\left(t^{2}-2 t+2\right) \leq(2-2 t) x+2 y \leq t^{2}-2 t+2\right\} ; \\
&\left|P_{t} \cap \mathbb{Z}^{2}\right|= \begin{cases}t^{2}-2 t+2, & \text { if } t \text { odd, } \\
t^{2}-2 t+5, & \text { if } t \text { even. }\end{cases}
\end{aligned}
$$

A Twist

Example: Let S_{t} be the degrees not appearing in $k\left[x^{t}, x^{t+1}, x^{t+3}\right]$.

$$
S_{t}=\{n \in \mathbb{Z}: \nexists a, b, c \in \mathbb{Z}, a, b, c \geq 0, t a+(t+1) b+(t+3) c=n\}
$$

Then

$$
\left|S_{t}\right|=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3), \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

A Twist

Example: Let S_{t} be the degrees not appearing in $k\left[x^{t}, x^{t+1}, x^{t+3}\right]$.
$S_{t}=\{n \in \mathbb{Z}: \nexists a, b, c \in \mathbb{Z}, a, b, c \geq 0, t a+(t+1) b+(t+3) c=n\}$.
Then

$$
\left|S_{t}\right|=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3), \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3), \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3) .
\end{array}\right.
$$

A Twist

Example: Let S_{t} be the degrees not appearing in $k\left[x^{t}, x^{t+1}, x^{t+3}\right]$.

$$
S_{t}=\{n \in \mathbb{Z}: \nexists a, b, c \in \mathbb{Z}, a, b, c \geq 0, t a+(t+1) b+(t+3) c=n\}
$$

Then

$$
\left|S_{t}\right|=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3), \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3), \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3) .
\end{array}\right.
$$

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\}
\end{aligned}
$$

$\left|S_{t}\right|=$ the number of divisors of t, not a quasi-polynomial.

How Far is Too Far?

Let's get greedy and go further.

- Two nonlinear parameters is too far:

$$
\begin{aligned}
S_{s, t} & =\{(x, y) \in \mathbb{Z}: x, y \geq 0, s x+t y=s t\} \\
& =\text { the interval between }(0, s) \text { and }(t, 0) . \\
\left|S_{s, t}\right| & =\operatorname{gcd}(s, t)+1, \text { not a quasi-polynomial. }
\end{aligned}
$$

- Nonlinearity in other variables is too far:

$$
\begin{aligned}
S_{t} & =\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x, y \geq 0, x y=t\} \\
& =\{x \in \mathbb{Z}: x \mid t\} \\
\left|S_{t}\right| & =\text { the number of divisors of } t, \text { not a quasi-polynomial. }
\end{aligned}
$$

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Stay Greedy!

There is a cottage industry of finding examples that seem to have bad nonlinearity, and finding ways to preprocess so that they fit in this Presburger umbrella:

- Integer hull of a parametric polyhedron, $\operatorname{conv}\left(P_{t} \cap \mathbb{Z}^{d}\right)$ [Calegari-Walker],
- Shortest Vector Problem in sublattices of \mathbb{Z}^{d} described by a basis with polynomial (in t) coordinates [Bogart-Goodrick-W],
- Local cohomology of powers of ideals, $H_{m}^{i}\left(R / I^{t}\right)$, and other families of ideals [Dao-Montaño].

Open Question: How greedy can we get? Are there broader settings where quasi-polynomial behavior is guaranteed?

Thank You!

To see more details, check out:
Bogart-W, A plethora of polynomials: a toolbox for counting problems, The American Mathematical Monthly (2022), and references therein.

