A Plethora of Polynomials: A Toolbox for Counting
Problems using Presburger Arithmetic
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Quasi-polynomials
Definition: g : N — N is a quasi-polynomial of period m if there
exist polynomials go, g1, ..., &m—1 such that

g(t) = 8t mod m(t),Vt e N.

Example: For t € N, let

Se={xeN: 1<2x<t}={12...,[t/2]}

Then

|S|: \‘EJ: t/27 iftmod2:0,
12 (t—1)/2, iftmod2=1.
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A Triangle

Let P be the triangle with vertices (0,0), (1/2,0), and (1/2,1).

Let S; = tPNZ?, for t € N.
What is |S¢|, as a function of t?
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A Triangle

The hard (but insightful) way to
calculate |S;|:

Definition: The generating function
for S C Z? is given by

f(S;x,y) = ny

(c,d)eS

Example:

F(Ssix,y) = Xy +xlyPtxlytxly?.

Let's find (S x,y).
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A Triangle

Let's first find f(S; x, y) for this set.
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A Triangle

F(Six,y) =
(XOyO —|—x1y1)
At

1+ xy
(1=x)(1-xy?)

X4y5 _ lel(X)l(X1y2)2
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A Triangle

X X Let k = [£/2].

X X

» _ k10

" (A x+x24)
e (L4y+y>+-)
» - k1

X N C(1-x)(1-y)
» X

Only the vertex of the cone depends
on t.
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1+ xy

1)~ 0?)
k+1

(1=x)(1-y)
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JrXk+1y2(k+1)+1

(L x2+ (02)? )
(L+y+y>+-)

xk+1,,2k+3

y
(1-xy?)(1—y)




A Triangle

f(Sf;Xa.y) =
1+ xy
(1=x)(1-xy?)
k+1

C@-)1-y)

Xk+ly2k+3

T —y)




A Triangle

1+ xy xk xktty2kt3

f(St;x,y) = (1 _ X)(l — xy2)_(1 — X)(l — y)+(1 — xy2)(1 — y).

(Sl 1) = Y 119=|S.
(c,d)ES:

So pluginx =1,y = 1!
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1+ xy xk xktty2kt3

f(St;x,y) = (1 _ X)(l — xy2)_(1 — X)(l — y)+(1 — xy2)(1 — y).

F(Su1,1)= Y 1917=|S,.
(c,d)ES:

So plug inx =1,y =1!
Uh oh.



A Triangle

1 + xy xk+1 Xk+1y2k+3

L0002 -0y @01y

f(st; va) =

F(Sa1,1)= Y 1917 =1S.
(c,d)ES:

So plugin x =1,y = 1!
Uh oh.

Take limit as (x,y) — (1,1), e.g, get common denominator, then
repeated L'Hopital's rule, one variable at a time:

[Sel = (k+1)* = ([t/2] +1)*.
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Parametric Polyhedra

Definition: A parametric polyhedron, P; C R is the solution set
to a system of linear inequalities of the form

aixy + -+ agxqg < bt + c.

Theorem (Ehrhart, McMullen, Brion, Barvinok)
|P. N Z9| agrees with a quasi-polynomial, for sufficiently large t.

> Inclusion-exclusion on generating functions reduces to cones.
» Cones simply translate with t.

» Generating function of such a cone is easy.

» Compute f(S;1,...,1) with L'Hopital’s rule.
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Parametric Polyhedra

Example: Let R = k[x1, x2, x3], graded so that deg x; = a;.
f(t) : = dimg{p € R: p homogeneous of degree t}
‘{x1 x52x33 of degree t}

- ‘{()\1,)\2, As) €Z3: N >0, aghi + apda + a3hs = t}

is a quasi-polynomial [Hilbert].
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Example: Let R = k[x1, x2, x3], graded so that degx; = a;.
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Boolean Operations
Our Example:

(x,y)€Z%: (y>0)A(2x <t)A(y —2x <0)

t:z: t:3
[ ]

How about allowing other Boolean operations like \/ (or)?



Boolean Operations
Our Example:

(x,y)€Z%: (y>0)A(x <t)A(y —2x <0)

t=2: t=3: t=4:
°

How about allowing other Boolean operations like \V (or)?

No problem [Barvinok—Pommersheim].
For example, Disjunctive Normal Form yields union of parametric
polyhedra:

AAN(BV CVD) is (ANB)V(AAC)V(AAD).



Boolean Operations

Let G be this graph:

® & ®
b

Q
o

Let x¢(t) be the number of ways to color the vertices of G with t
possible colors, so that no adjacent vertices have the same color.
Then x¢(t) = t(t —1)?, a polynomial.

If x5, xp, xc are the colors of a, b, and ¢, then
> 1< Xa,Xp, X S
> o # xp and xp £ Xe,

a Boolean combination of linear (in)equalities.
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possible colors, so that no adjacent vertices have the same color.
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Boolean Operations

Fill a 3 x 3 square with distinct positive integers such that the sum
of every row, column, and two main diagonals are all exactly t.

12 1 11
7 8 9
5 15 4

If t =6 (mod 18), for example, then there are 3(t — 6)(t — 10)
ways to do this [Beck—Zaslavsky]. A quasi-polynomial!

If X is the number in the ith row and jth column,
» We require x11 # x12 and so on,
> x11 + X12 + x13 = t and so on,

a Boolean combination of linear (in)equalities.
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If X is the number in the ith row and jth column,
» We require x11 # x12 and so on,
> x11 + X12 + x13 = t and so on,

a Boolean combination of linear (in)equalities.
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Boolean Operations

How many ways are there to place three queens on a t x t board
such that no two queens are attacking each other? There are

t® 5¢5  79¢* 2543 43t 1 t 1
R T B i (—Uf<-)

% 3 1 2 12 '8 4 8

ways, a quasi-polynomial of period 2 [Chaiken—Hanusa—Zaslavsky].
Suppose we place Queen i at position (x;,y;) € Z? where
1 <xj,y; <t. Then
> X3 # xp says that the first two queens can’t be in the same
row,

> x1 — ¥1 # X2 — y» says they cannot be along one of the same
diagonals, and so on,

a Boolean combination of linear (in)equalities.
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Multiple Parameters

7

t<s<2t 0<2t<s 0<s<t

As the combinatorial type changes, the inclusion-exclusion of cones
changes. But for all polyhedra of the same combinatorial type,
we're just in the same old setup.

End up with
S 5)s+ 54152+ 5] +1, if t <s <2t
c(s,t) = sE—ngs—§+§+L§J2+L§J+1, if 0 <2t <s,
E43gg, if0<s<t,

a piecewise-defined quasi-polynomial.
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t<s<2t 0<2t<s 0<s<t

As the combinatorial type changes, the inclusion-exclusion of cones
changes. But for all polyhedra of the same combinatorial type,
we're just in the same old setup.

End up with
15 1 +1, if t <s <2t
c(s,t)=qst—[3]s— 5+ L4 [5]2+ (3] +1, ifO<2t<s,
ﬁ+%+1’ if0<s<t,

a piecewise-defined quasi-polynomial.
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No problem [W].

» Quantifiers can be eliminated [Presburger]|, by also allowing
the mod k operation, for constants k:

{XGN: EIyEN,x:3y+1}:{X€N: x:lmod3}.
» mod plays nicely with generating functions:

={1,4,7,... FSix) = x bt pxT o= —
S {777 }7 (SX) X+ X"+ X+ 1_X3



Quantifiers

Let's get greedy and go further: “Boolean operations” sounds like
logic. How about adding quantifiers (3,V)?

No problem [W].

» Quantifiers can be eliminated [Presburger]|, by also allowing
the mod k operation, for constants k:

{XGN: EIyEN,x:3y+1}:{X€N: X:1mod3}.
» mod plays nicely with generating functions:

={1,4,7,... FSix) = x bt pxT o= —
S {777 }7 (SX) X+ X"+ X+ 1_X3



Quantifiers

Let's get greedy and go further: “Boolean operations” sounds like
logic. How about adding quantifiers (3,V)?

No problem [W].

» Quantifiers can be eliminated [Presburger]|, by also allowing
the mod k operation, for constants k:

{XGN: EIyEN,x:3y+1}:{X€N: x:lmod3}.
» mod plays nicely with generating functions:

S={LAT ] f(S?X)=X1+X4+x7+...:ﬁ.



Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x°], that is, the semigroup generated by 3 and 5,

S =10,3,5,6,8,9,10,...}
={ne€Z: Ix,yeZ (x>0) A (y>0) A (B3x+5y=n)}

We will eliminate one quantifier at a time, Starting with x.



Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x%], that is, the semigroup generated by 3 and 5,

S =10,3,5,6,8,9,10,...}
={ne€Z: Ix,yeZ (x>0) A (y>0) A (B3x+5y=n)}

We will eliminate one quantifier at a time, Starting with x.



Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x%], that is, the semigroup generated by 3 and 5,

S =1{0,3,5,6,8,9,10,...}
={ne€Z: Ix,yeZ (x>0) A (y>0) A (B3x+5y=n)}

We will eliminate one quantifier at a time, Starting with x.



Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x%], that is, the semigroup generated by 3 and 5,

S =10,3,5,6,8,9,10,...}
={ne€Z: IxyeZ (x>0 A (y>0) A (Bx+5y=n)}

We will eliminate one quantifier at a time, Starting with x.



Quantifiers

Example of Quantifier Elimination: Let S be the set of degrees
appearing in k[x3, x%], that is, the semigroup generated by 3 and 5,

S =10,3,5,6,8,9,10,...}
={ne€Z: Ix,yeZ (x>0) A (y>0) A (B3x+5y=n)}

We will eliminate one quantifier at a time, Starting with x.



Quantifiers

S={ne€Z: Ix,yeZ, (x>0 A (y>0) A (Bx+5y=n)}

If there exists any x satisfying this, then:
» It must be x = (n — 5y)/3,
» We must have 3|(n — 5y),
Substituting:

n—>by

w
v
o
>
—_
<
v
=
——

Sz{nEZ: Jy € Z, 3|(n—5y) A <

:{nEZ: 3y €z, 3|(n—5y) A (5y <n

>
<
\Y
=

The x's are gone! Now let’s eliminate y.
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Quantifiers

S:{nEZ: 3y ez, 3|(n—5y) A (5y<n) A (yZO)}.

If there exists any y satisfying this, then:
>y >0,
» If y > 3, then y — 3 also satisfies this,
» So either y =0, y =1, or y = 2 satisfies this.

Substitute these three options in for y and join with V's:
Sz{nEZ: <3|n A(0<n) A (020))
v (3\(n—5) A (5<n) A (120))
v (3\(n— 10) A (10<n) A (22 0))
={0,3,6,...} U {5,8,11,...} LU {10,13,16,...}.

There are no quantifiers left!
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Presburger Arithmetic

Theorem (W)

Suppose F is a first-order formula over the integers, defined using
linear inequalities, Boolean operations, and quantifiers, that is, F is
a formula in Presburger arithmetic. Suppose the free
(unquantified) variables in F are ci, ... cq (the counted variables)
and p1,...,pn (the parameter variables). Then

g(pis...,pn) = #(c1,...,cq) making F true

is a piecewise quasi-polynomial, defined on polyhedral pieces.

This covers a wide variety of counting problems in different fields.
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A Twist

Let's get greedy and go further. In what other settings do we still
end up with quasi-polynomial behavior? Here's one:

» Require a single parameter, t.

» Allow multiplication by this parameter (but not by other
variables).

» So base inequalities are of the form

pi(t)xi + - + pa(t)xn < q(t),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.

» As t changes, normal vectors can “twist”.

» Still allow Boolean operations and quantifiers.

Then you still get quasi-polynomials! (for sufficiently large t)
[Bogart—-Goodrick—W].
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A Twist

Example: Let S; be the degrees not appearing in k [x%, x" ™ xt3].
Se={n€Z: Pa,b,c €Z, a,b,c >0, tat+(t+1)b+(t+3)c = n}.

Then
%t2+%t, ift=0 (mod 3),
Sel=q tt2+4t—2, ift=1 (mod3),
24 lt—2 ift=2 (mod3).
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How Far is Too Far?

Let's get greedy and go further.
» Two nonlinear parameters is too far:
Sse ={(x,y)€Z: x,y >0, sx+ ty = st}

= the interval between (0, s) and (t,0).
|Ss,t| = ged(s, t) + 1, not a quasi-polynomial.

» Nonlinearity in other variables is too far:

Si={x€Z: 3yeZ, x,y>0, xy =t}
={xeZ: X’t}

|S¢| = the number of divisors of t, not a quasi-polynomial.
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Let's get greedy and go further.
» Two nonlinear parameters is too far:
Sse ={(x,y)€Z: x,y >0, sx+ ty = st}

= the interval between (0, s) and (t,0).
|Ss,t| = ged(s, t) + 1, not a quasi-polynomial.
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Stay Greedy!

There is a cottage industry of finding examples that seem to have
bad nonlinearity, and finding ways to preprocess so that they fit in
this Presburger umbrella:

» Integer hull of a parametric polyhedron, conv(P; N Z%)
[Calegari-Walker],

» Shortest Vector Problem in sublattices of Z¢ described by a
basis with polynomial (in t) coordinates
[Bogart—Goodrick—W],

» Local cohomology of powers of ideals, H (R/I?), and other
families of ideals [Dao-Montafio|.

Open Question: How greedy can we get? Are there broader
settings where quasi-polynomial behavior is guaranteed?
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Thank Youl

To see more details, check out:

Bogart-W, A plethora of polynomials: a toolbox for counting
problems, The American Mathematical Monthly (2022),
and references therein.



