# Quasi-polynomial Behavior in Factorizations via Presburger Arithmetic 

Kevin Woods<br>Oberlin College

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Let $S=\langle 2,3,6\rangle=\{0,2,3,4,5,6, \ldots\}$, the additive semigroup (monoid) generated by 2,3 , and 6 .

- Boring, and the 6 is redundant.

Definition: Given $a \in S$, a factorization of $a$ is $(x, y, z) \in \mathbb{N}^{3}$ (where $\mathbb{N}=\{0,1,2, \ldots\}$ ) such that $2 x+3 y+6 z=a$.

- A factorization demonstrates that $a \in S$.

Example: 8 has three factorizations: $(4,0,0),(1,2,0)$, and ( $1,0,1$ ).

- A little more interesting now, at least.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Let $S=\langle 2,3,6\rangle=\{0,2,3,4,5,6, \ldots\}$, the additive semigroup (monoid) generated by 2,3 , and 6 .

- Boring, and the 6 is redundant.

Definition: Given $a \in S$, a factorization of $a$ is $(x, y, z) \in \mathbb{N}^{3}$ (where $\mathbb{N}=\{0,1,2, \ldots\}$ ) such that $2 x+3 y+6 z=a$.

- A factorization demonstrates that $a \in S$.

Example: 8 has three factorizations: $(4,0,0),(1,2,0)$, and ( $1,0,1$ ).

- A little more interesting now, at least.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Let $S=\langle 2,3,6\rangle=\{0,2,3,4,5,6, \ldots\}$, the additive semigroup (monoid) generated by 2,3 , and 6 .

- Boring, and the 6 is redundant.

Definition: Given $a \in S$, a factorization of $a$ is $(x, y, z) \in \mathbb{N}^{3}$ (where $\mathbb{N}=\{0,1,2, \ldots\}$ ) such that $2 x+3 y+6 z=a$.

- A factorization demonstrates that $a \in S$.

Example: 8 has three factorizations: $(4,0,0),(1,2,0)$, and ( $1,0,1$ ).

- A little more interesting now, at least.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Let $S=\langle 2,3,6\rangle=\{0,2,3,4,5,6, \ldots\}$, the additive semigroup (monoid) generated by 2,3 , and 6 .

- Boring, and the 6 is redundant.

Definition: Given $a \in S$, a factorization of $a$ is $(x, y, z) \in \mathbb{N}^{3}$ (where $\mathbb{N}=\{0,1,2, \ldots\}$ ) such that $2 x+3 y+6 z=a$.

- A factorization demonstrates that $a \in S$.

Example: 8 has three factorizations: $(4,0,0),(1,2,0)$, and ( $1,0,1$ ).

- A little more interesting now, at least.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Given $t \in \mathbb{N}$, define $f(t)$ to be the number of factorizations of $t$. Does it have a nice formula?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Given $t \in \mathbb{N}$, define $f(t)$ to be the number of factorizations of $t$. Does it have a nice formula?

$$
f(t)= \begin{cases}\binom{\lfloor t / 6\rfloor+2}{2}, & \text { if } t \equiv 0,2,3,4,5(\bmod 6), \\ \binom{\lfloor t / 6\rfloor+1}{2}, & \text { if } t \equiv 1(\bmod 6) .\end{cases}
$$

- Can you figure out why? Hint: factorizations will (approximately) break up $t$ into $\approx t / 6$ groups of 6 (three 2 's, two 3 's, or one 6 ).


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Given $t \in \mathbb{N}$, define $f(t)$ to be the number of factorizations of $t$. Does it have a nice formula?

$$
f(t)= \begin{cases}\binom{\lfloor t / 6\rfloor+2}{2}, & \text { if } t \equiv 0,2,3,4,5(\bmod 6) \\ \binom{\lfloor t / 6\rfloor}{ 2}, & \text { if } t \equiv 1(\bmod 6)\end{cases}
$$

- Can you figure out why? Hint: factorizations will (approximately) break up $t$ into $\approx t / 6$ groups of 6 (three 2 's, two 3 's, or one 6 ).


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Another way of writing it:

$$
f(t)= \begin{cases}\frac{1}{72} t^{2}+\frac{1}{4} t+1, & \text { if } t \equiv 0(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{18} t-\frac{5}{72}, & \text { if } t \equiv 1(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{7}{36} t+\frac{5}{9}, & \text { if } t \equiv 2(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{6} t+\frac{3}{8}, & \text { if } t \equiv 3(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{5}{36} t+\frac{2}{9}, & \text { if } t \equiv 4(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{9} t+\frac{7}{72}, & \text { if } t \equiv 5(\bmod 6) .\end{cases}
$$

Such a formula is called a quasi-polynomial: there exist a period $m$ and polynomials $f_{0}, f_{1}, \ldots, f_{m-1}$ such that

$$
f(t)=f_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Another way of writing it:

$$
f(t)= \begin{cases}\frac{1}{72} t^{2}+\frac{1}{4} t+1, & \text { if } t \equiv 0(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{18} t-\frac{5}{72}, & \text { if } t \equiv 1(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{7}{36} t+\frac{5}{9}, & \text { if } t \equiv 2(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{6} t+\frac{3}{8}, & \text { if } t \equiv 3(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{5}{36} t+\frac{2}{9}, & \text { if } t \equiv 4(\bmod 6), \\ \frac{1}{72} t^{2}+\frac{1}{9} t+\frac{7}{72}, & \text { if } t \equiv 5(\bmod 6) .\end{cases}
$$

Such a formula is called a quasi-polynomial: there exist a period $m$ and polynomials $f_{0}, f_{1}, \ldots, f_{m-1}$ such that

$$
f(t)=f_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Definition: The length of a factorization $(x, y, z)$ is $x+y+z$.
Example: The three factorizations of 8 are $(4,0,0),(1,2,0)$, and $(1,0,1)$, and they have lengths 4,3 , and 2 , respectively.

Now let $f(t)$ be the number of distinct factorization lengths of $t$. So $f(8)=3$. Does this $f$ have a nice formula?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Definition: The length of a factorization $(x, y, z)$ is $x+y+z$.
Example: The three factorizations of 8 are $(4,0,0),(1,2,0)$, and $(1,0,1)$, and they have lengths 4,3 , and 2 , respectively.

Now let $f(t)$ be the number of distinct factorization lengths of $t$. So $f(8)=3$. Does this $f$ have a nice formula?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Definition: The length of a factorization $(x, y, z)$ is $x+y+z$.
Example: The three factorizations of 8 are $(4,0,0),(1,2,0)$, and $(1,0,1)$, and they have lengths 4,3 , and 2 , respectively.

Now let $f(t)$ be the number of distinct factorization lengths of $t$. So $f(8)=3$. Does this $f$ have a nice formula?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Definition: The length of a factorization $(x, y, z)$ is $x+y+z$.
Example: The three factorizations of 8 are $(4,0,0),(1,2,0)$, and $(1,0,1)$, and they have lengths 4,3 , and 2 , respectively.

Now let $f(t)$ be the number of distinct factorization lengths of $t$. So $f(8)=3$. Does this $f$ have a nice formula?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Yes!

$$
f(t)= \begin{cases}\left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil+1, & \text { if } t \equiv 0,2,3(\bmod 6), \\ \left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil, & \text { if } t \equiv 1,4,5(\bmod 6), t>1, \\ 0, & \text { if } t=1 .\end{cases}
$$

- Lengths must be between $\left\lceil\frac{t}{6}\right\rceil$ (all 6 's) and $\left\lfloor\frac{t}{2}\right\rfloor$ (all 2 's), so all possible lengths (or all but one) are realized.

This is eventually (for $t>1$ ) a quasi-polynomial.

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Yes!

$$
f(t)= \begin{cases}\left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil+1, & \text { if } t \equiv 0,2,3(\bmod 6), \\ \left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil, & \text { if } t \equiv 1,4,5(\bmod 6), t>1 \\ 0, & \text { if } t=1 .\end{cases}
$$

- Lengths must be between $\left\lceil\frac{t}{6}\right\rceil$ (all 6 's) and $\left\lfloor\frac{t}{2}\right\rfloor$ (all 2 's), so all possible lengths (or all but one) are realized.

This is eventually (for $t>1$ ) a quasi-polynomial.

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Yes!

$$
f(t)= \begin{cases}\left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil+1, & \text { if } t \equiv 0,2,3(\bmod 6), \\ \left\lfloor\frac{t}{2}\right\rfloor-\left\lceil\frac{t}{6}\right\rceil, & \text { if } t \equiv 1,4,5(\bmod 6), t>1 \\ 0, & \text { if } t=1 .\end{cases}
$$

- Lengths must be between $\left\lceil\frac{t}{6}\right\rceil$ (all 6 's) and $\left\lfloor\frac{t}{2}\right\rfloor$ (all 2 's), so all possible lengths (or all but one) are realized.

This is eventually (for $t>1$ ) a quasi-polynomial.

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or how about $f(t)$ equals the number of semigroup elements that has some factorization of length at most $t$ ?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or how about $f(t)$ equals the number of semigroup elements that has some factorization of length at most $t$ ?

$$
f(t)= \begin{cases}1, & \text { if } t=0 \\ 4, & \text { if } t=1 \\ 6 t-3, & \text { if } t>1\end{cases}
$$

- Almost every integer up to the largest possible, $6 t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or how about $f(t)$ equals the number of semigroup elements that has some factorization of length at most $t$ ?

$$
f(t)= \begin{cases}1, & \text { if } t=0 \\ 4, & \text { if } t=1 \\ 6 t-3, & \text { if } t>1\end{cases}
$$

- Almost every integer up to the largest possible, $6 t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(t)$ equals the number of semigroup elements that has some factorization of length exactly $t$ ?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(t)$ equals the number of semigroup elements that has some factorization of length exactly $t$ ?

$$
f(t)= \begin{cases}1, & \text { if } t=0 \\ 3, & \text { if } t=1 \\ 4 t-2, & \text { if } t>1\end{cases}
$$

- Almost every integer between $2 t$ and $6 t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(t)$ equals the number of semigroup elements that has some factorization of length exactly $t$ ?

$$
f(t)= \begin{cases}1, & \text { if } t=0 \\ 3, & \text { if } t=1 \\ 4 t-2, & \text { if } t>1\end{cases}
$$

- Almost every integer between $2 t$ and $6 t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

So far these are all univariate functions, and the result is eventually a quasi-polynomial. How about more parameters?

Let $f(s, t)$ be the number of factorization of $t$ of length $s$.

## Some Nice Functions, $S=\langle 2,3,6\rangle$

So far these are all univariate functions, and the result is eventually a quasi-polynomial. How about more parameters?

Let $f(s, t)$ be the number of factorization of $t$ of length $s$.

## Some Nice Functions, $S=\langle 2,3,6\rangle$

So far these are all univariate functions, and the result is eventually a quasi-polynomial. How about more parameters?

Let $f(s, t)$ be the number of factorization of $t$ of length $s$.
$f(s, t)= \begin{cases}0, & \text { if } t<2 s \text { or } t>6 s, \\ 1+\left\lfloor\frac{t-2 s}{4}\right\rfloor, & \text { if } 2 s \leq t \leq 3 s, \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor, & \text { if } 3 s<t \leq 6 s, t \equiv 0,2,3(\bmod 6), \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor-c_{s, t}, & \text { if } 3 s<t \leq 6 s, t \equiv 1,4,5(\bmod 6),\end{cases}$
where $c_{s, t}=(\lfloor t / 6\rfloor+s \bmod 2)$.
This is a piecewise quasi-polynomial (where the pieces are defined by linear inequalities in the parameters).

- The last piece has period 2 in $s$ and period 12 in $t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

So far these are all univariate functions, and the result is eventually a quasi-polynomial. How about more parameters?

Let $f(s, t)$ be the number of factorization of $t$ of length $s$.
$f(s, t)= \begin{cases}0, & \text { if } t<2 s \text { or } t>6 s, \\ 1+\left\lfloor\frac{t-2 s}{4}\right\rfloor, & \text { if } 2 s \leq t \leq 3 s, \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor, & \text { if } 3 s<t \leq 6 s, t \equiv 0,2,3(\bmod 6), \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor-c_{s, t}, & \text { if } 3 s<t \leq 6 s, t \equiv 1,4,5(\bmod 6),\end{cases}$
where $c_{s, t}=(\lfloor t / 6\rfloor+s \bmod 2)$.
This is a piecewise quasi-polynomial (where the pieces are defined by linear inequalities in the parameters).

- The last piece has period 2 in $s$ and period 12 in $t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

So far these are all univariate functions, and the result is eventually a quasi-polynomial. How about more parameters?

Let $f(s, t)$ be the number of factorization of $t$ of length $s$.
$f(s, t)= \begin{cases}0, & \text { if } t<2 s \text { or } t>6 s, \\ 1+\left\lfloor\frac{t-2 s}{4}\right\rfloor, & \text { if } 2 s \leq t \leq 3 s, \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor, & \text { if } 3 s<t \leq 6 s, t \equiv 0,2,3(\bmod 6), \\ 1+\left\lfloor\frac{6 s-t}{12}\right\rfloor-c_{s, t}, & \text { if } 3 s<t \leq 6 s, t \equiv 1,4,5(\bmod 6),\end{cases}$
where $c_{s, t}=(\lfloor t / 6\rfloor+s \bmod 2)$.
This is a piecewise quasi-polynomial (where the pieces are defined by linear inequalities in the parameters).

- The last piece has period 2 in $s$ and period 12 in $t$.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(r, s, t)$ equals the number of semigroup elements that have a factorization $(x, y, z)$ with $x \leq r, y \leq s, z \leq t$ ?

## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(r, s, t)$ equals the number of semigroup elements that have a factorization $(x, y, z)$ with $x \leq r, y \leq s, z \leq t$ ?

$$
f(r, s, t)= \begin{cases}2 r+3 s+6 t-1, & \text { if } s \geq 1, r \geq 2 \\ (2 r+3 s+6 t+2) / 2, & \text { if } s=0, r \geq 2 \\ \text { etc. } & \end{cases}
$$

- The semigroup element must be between 0 and $2 r+3 s+6 t$, so this is all but two possibilities.
- Except if $s=0$ it is impossible to get odd numbers, etc.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(r, s, t)$ equals the number of semigroup elements that have a factorization $(x, y, z)$ with $x \leq r, y \leq s, z \leq t$ ?

$$
f(r, s, t)= \begin{cases}2 r+3 s+6 t-1, & \text { if } s \geq 1, r \geq 2 \\ (2 r+3 s+6 t+2) / 2, & \text { if } s=0, r \geq 2 \\ \text { etc. } & \end{cases}
$$

- The semigroup element must be between 0 and $2 r+3 s+6 t$, so this is all but two possibilities.
- Except if $s=0$ it is impossible to get odd numbers, etc.


## Some Nice Functions, $S=\langle 2,3,6\rangle$

Or $f(r, s, t)$ equals the number of semigroup elements that have a factorization $(x, y, z)$ with $x \leq r, y \leq s, z \leq t$ ?

$$
f(r, s, t)= \begin{cases}2 r+3 s+6 t-1, & \text { if } s \geq 1, r \geq 2 \\ (2 r+3 s+6 t+2) / 2, & \text { if } s=0, r \geq 2 \\ \text { etc. } & \end{cases}
$$

- The semigroup element must be between 0 and $2 r+3 s+6 t$, so this is all but two possibilities.
- Except if $s=0$ it is impossible to get odd numbers, etc.


## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg$ ), and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg)$, and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg$ ), and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg)$, and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg$ ), and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg)$, and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg$ ), and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

What do all of these combinatorial questions have in common?
They count the number of elements in a set defined in Presburger arithmetic: sets defined over the integers using:

- linear (in)equalities,
- boolean operations ( $\wedge, \vee, \neg$ ), and
- quantifiers $(\exists, \forall)$.

Factorizations of $t$ :

$$
(x, y, z) \in \mathbb{N}: 2 x+3 y+6 z=t
$$

Lengths of factorizations of $t$ :

$$
\ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

## Presburger Arithmetic

Semigroup elements that have some factorization of length $\leq t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z \leq t)
$$

Semigroup elements that have some factorization of length $=t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z=t)
$$

Factorizations of $t$ of length $s$ :

$$
(x, y, z) \in \mathbb{N}:(2 x+3 y+6 z=t) \wedge(x+y+z=s)
$$

Semigroup elements that have a factorization $(x, y, z)$ with $x \leq r$, $y \leq s, z \leq t$ :
$a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x \leq r) \wedge(y \leq s) \wedge(z \leq t)$.

## Presburger Arithmetic

Semigroup elements that have some factorization of length $\leq t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z \leq t)
$$

Semigroup elements that have some factorization of length $=t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z=t)
$$

Factorizations of $t$ of length $s$ :

$$
(x, y, z) \in \mathbb{N}:(2 x+3 y+6 z=t) \wedge(x+y+z=s)
$$

Semigroup elements that have a factorization $(x, y, z)$ with $x \leq r$, $y \leq s, z \leq t$ :
$a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x \leq r) \wedge(y \leq s) \wedge(z \leq t)$.

## Presburger Arithmetic

Semigroup elements that have some factorization of length $\leq t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z \leq t)
$$

Semigroup elements that have some factorization of length $=t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z=t)
$$

Factorizations of $t$ of length $s$ :

$$
(x, y, z) \in \mathbb{N}:(2 x+3 y+6 z=t) \wedge(x+y+z=s)
$$

Semigroup elements that have a factorization $(x, y, z)$ with $x \leq r$, $y \leq s, z \leq t$ :
$a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x \leq r) \wedge(y \leq s) \wedge(z \leq t)$.

## Presburger Arithmetic

Semigroup elements that have some factorization of length $\leq t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z \leq t)
$$

Semigroup elements that have some factorization of length $=t$ :

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x+y+z=t)
$$

Factorizations of $t$ of length $s$ :

$$
(x, y, z) \in \mathbb{N}:(2 x+3 y+6 z=t) \wedge(x+y+z=s)
$$

Semigroup elements that have a factorization $(x, y, z)$ with $x \leq r$, $y \leq s, z \leq t$ :
$a \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=a) \wedge(x \leq r) \wedge(y \leq s) \wedge(z \leq t)$.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:
$f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)$.

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:

$$
f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:

$$
f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:
$f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)$.

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:

$$
f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the corresponding counting functions will be piecewise quasi-polynomials.

Note: There are three types of variables (parameters, counted, quantified) that may appear in the linear inequalities:

$$
f(t)=\# \ell \in \mathbb{N}: \exists x, y, z \in \mathbb{N},(2 x+3 y+6 z=t) \wedge(x+y+z=\ell)
$$

Note: For one parameter variable, "piecewise" quasi-polynomial is equivalent to "eventually" a quasi-polynomial.

## Extensions

The theorem is actually more general.
The largest/smallest element of a set can be picked out, and it will have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of $t$ of length $s$ is

$$
\left(\frac{6 s-t-9}{4}, 3, \frac{t-2 s-3}{4}\right), \text { if } t \equiv 3(\bmod 4), s \equiv 0(\bmod 2)
$$

and so forth.

Also, the parameters for which a Presburger sentence is true will be piecewise/eventually periodic:

Example: $\quad t \in\langle 6,8\rangle$ if and only if $t \equiv 0(\bmod 2)$, for $t>10$.

## Extensions

The theorem is actually more general.
The largest/smallest element of a set can be picked out, and it will have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of $t$ of length $s$ is

$$
\left(\frac{6 s-t-9}{4}, 3, \frac{t-2 s-3}{4}\right), \text { if } t \equiv 3(\bmod 4), s \equiv 0(\bmod 2)
$$

and so forth.

Also, the parameters for which a Presburger sentence is true will be piecewise/eventually periodic:

Example: $\quad t \in\langle 6,8\rangle$ if and only if $t \equiv 0(\bmod 2)$, for $t>10$.

## Extensions

The theorem is actually more general.
The largest/smallest element of a set can be picked out, and it will have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of $t$ of length $s$ is

$$
\left(\frac{6 s-t-9}{4}, 3, \frac{t-2 s-3}{4}\right), \text { if } t \equiv 3(\bmod 4), s \equiv 0(\bmod 2)
$$

and so forth.

Also, the parameters for which a Presburger sentence is true will be piecewise/eventually periodic:

Example: $\quad t \in\langle 6,8\rangle$ if and only if $t \equiv 0(\bmod 2)$, for $t>10$.

## Extensions

The theorem is actually more general.
The largest/smallest element of a set can be picked out, and it will have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of $t$ of length $s$ is

$$
\left(\frac{6 s-t-9}{4}, 3, \frac{t-2 s-3}{4}\right), \text { if } t \equiv 3(\bmod 4), s \equiv 0(\bmod 2)
$$

and so forth.

Also, the parameters for which a Presburger sentence is true will be piecewise/eventually periodic:

Example: $t \in\langle 6,8\rangle$ if and only if $t \equiv 0(\bmod 2)$, for $t>10$.

## Extensions

The theorem is actually more general.
The largest/smallest element of a set can be picked out, and it will have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of $t$ of length $s$ is

$$
\left(\frac{6 s-t-9}{4}, 3, \frac{t-2 s-3}{4}\right), \text { if } t \equiv 3(\bmod 4), s \equiv 0(\bmod 2)
$$

and so forth.

Also, the parameters for which a Presburger sentence is true will be piecewise/eventually periodic:

Example: $t \in\langle 6,8\rangle$ if and only if $t \equiv 0(\bmod 2)$, for $t>10$.

## Extensions

Everything I'm saying here also applies to affine semigroups (additive semigroups in $\mathbb{Z}^{k}$ ) as well.

- All of the constraints are still linear, so expressible in Presburger arithmetic.

Example: For the affine semigroup $\langle(1,2),(2,2),(3,2)\rangle$, the number of factorizations of $(s, t)$ is

$$
\frac{2 t-s+2}{2}, \text { if } \frac{3}{2} t \leq s \leq 2 t, s \equiv 0(\bmod 2)
$$

and so forth.

## Extensions

Everything I'm saying here also applies to affine semigroups (additive semigroups in $\mathbb{Z}^{k}$ ) as well.

- All of the constraints are still linear, so expressible in Presburger arithmetic.

Example: For the affine semigroup $\langle(1,2),(2,2),(3,2)\rangle$, the number of factorizations of $(s, t)$ is

$$
\frac{2 t-s+2}{2}, \text { if } \frac{3}{2} t \leq s \leq 2 t, s \equiv 0(\bmod 2)
$$

and so forth.

## A Twist

So far we've fixed the semigroup, but what if we let it vary with $t$ ?

Example: $S_{t}=\langle t, t+1, t+3\rangle$. (in general, we could have $S_{t}$ generated by any polynomials in $t$ ).

Then $S_{t}$ can be defined by

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N}, t x+(t+1) y+(t+3) z=a
$$

These are nonlinear in $t$ !

## A Twist

So far we've fixed the semigroup, but what if we let it vary with $t$ ?

Example: $S_{t}=\langle t, t+1, t+3\rangle$. (in general, we could have $S_{t}$ generated by any polynomials in $t$ ).

Then $S_{t}$ can be defined by

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N}, t x+(t+1) y+(t+3) z=a
$$

These are nonlinear in $t$ !

## A Twist

So far we've fixed the semigroup, but what if we let it vary with $t$ ?

Example: $S_{t}=\langle t, t+1, t+3\rangle$. (in general, we could have $S_{t}$ generated by any polynomials in $t$ ).

Then $S_{t}$ can be defined by

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N}, t x+(t+1) y+(t+3) z=a
$$

These are nonlinear in $t$ !

## A Twist

So far we've fixed the semigroup, but what if we let it vary with $t$ ?

Example: $S_{t}=\langle t, t+1, t+3\rangle$. (in general, we could have $S_{t}$ generated by any polynomials in $t$ ).

Then $S_{t}$ can be defined by

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N}, t x+(t+1) y+(t+3) z=a
$$

These are nonlinear in $t$ !

## A Twist

So far we've fixed the semigroup, but what if we let it vary with $t$ ?

Example: $S_{t}=\langle t, t+1, t+3\rangle$. (in general, we could have $S_{t}$ generated by any polynomials in $t$ ).

Then $S_{t}$ can be defined by

$$
a \in \mathbb{N}: \exists x, y, z \in \mathbb{N}, t x+(t+1) y+(t+3) z=a
$$

These are nonlinear in $t$ !

## A Twist

And yet we still get nice functions!

Let $f(t)$ be the number of gaps of $S_{t}$ (positive integers not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Let $f(t)$ be the Frobenius number of $S_{t}$ (the largest integer not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{3} t^{2}+t-1, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{2}{3} t-2, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{1}{3} t-1 & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

## A Twist

And yet we still get nice functions!

Let $f(t)$ be the number of gaps of $S_{t}$ (positive integers not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Let $f(t)$ be the Frobenius number of $S_{t}$ (the largest integer not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{3} t^{2}+t-1, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{2}{3} t-2, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{1}{3} t-1 & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

## A Twist

And yet we still get nice functions!

Let $f(t)$ be the number of gaps of $S_{t}$ (positive integers not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{6} t^{2}+\frac{1}{2} t, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3}, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{6} t^{2}+\frac{1}{2} t-\frac{2}{3} & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

Let $f(t)$ be the Frobenius number of $S_{t}$ (the largest integer not in $S_{t}$ ).

$$
f(t)=\left\{\begin{array}{lll}
\frac{1}{3} t^{2}+t-1, & \text { if } t \equiv 0 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{2}{3} t-2, & \text { if } t \equiv 1 & (\bmod 3) \\
\frac{1}{3} t^{2}+\frac{1}{3} t-1 & \text { if } t \equiv 2 & (\bmod 3)
\end{array}\right.
$$

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

This works in the following setting, called parametric Presburger arithmetic:

- Require a single parameter, $t$.
- Allow multiplication by this parameter (but not by other variables).
- So base inequalities are of the form

$$
p_{1}(t) x_{1}+\cdots+p_{n}(t) x_{n} \leq q(t)
$$

where $p_{i}, q \in \mathbb{Z}[t]$. For fixed $t$, these are just linear inequalities.

- Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart-Goodrick-W].

## A Twist

Almost any invariant or property of a semigroup can now be applied to $S_{t}$ as a function of $t$. As long as is can be defined in parametric Presburger arithmetic, you will get eventual quasi-polynomial behavior.

We give many examples in [Bogart-Goodrick-W].

## A Twist

Almost any invariant or property of a semigroup can now be applied to $S_{t}$ as a function of $t$. As long as is can be defined in parametric Presburger arithmetic, you will get eventual quasi-polynomial behavior.

We give many examples in [Bogart-Goodrick-W].

## A Twist

Almost any invariant or property of a semigroup can now be applied to $S_{t}$ as a function of $t$. As long as is can be defined in parametric Presburger arithmetic, you will get eventual quasi-polynomial behavior.

We give many examples in [Bogart-Goodrick-W].

## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the following (when finite) are eventually quasi-polynomial:

- The number of gaps,
- The Frobenius number,
- The number of pseudo-Frobenius numbers,
- The number of fundamental gaps,
- The cardinality of the delta set,
- For fixed $i$, the value of the $i$ th largest element of the Apéry set


## A Twist

Example: The Frobenius number, $a$, is defined by

$$
a \notin S_{t} \wedge \forall b>a, b \in S_{t},
$$

can be expanded out to a parametric Presburger sentence.

Example: The set of pseudo-Frobenius numbers is

$$
a \in \mathbb{N}: a \notin S_{t} \wedge \forall b \in S_{t} \backslash 0, a+b \in S_{t} .
$$

## A Twist

Example: The Frobenius number, $a$, is defined by

$$
a \notin S_{t} \wedge \forall b>a, b \in S_{t},
$$

can be expanded out to a parametric Presburger sentence.

Example: The set of pseudo-Frobenius numbers is

$$
a \in \mathbb{N}: a \notin S_{t} \wedge \forall b \in S_{t} \backslash 0, a+b \in S_{t} .
$$

## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the set of $t$ such that $S_{t}$ has the following properties is eventually periodic:

- $S_{t}$ is a numerical semigroup.
- $S_{t}$ is a symmetric numerical semigroup
- $S_{t}$ is an irreducible numerical semigroup.


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the set of $t$ such that $S_{t}$ has the following properties is eventually periodic:

- $S_{t}$ is a numerical semigroup.
- $S_{t}$ is a symmetric numerical semigroup
- $S_{t}$ is an irreducible numerical semigroup.


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the set of $t$ such that $S_{t}$ has the following properties is eventually periodic:

- $S_{t}$ is a numerical semigroup.
- $S_{t}$ is a symmetric numerical semigroup
- $S_{t}$ is an irreducible numerical semigroup.


## A Twist

Given a family of semigroups, $S_{t}$, generated by polynomials in $t$, the set of $t$ such that $S_{t}$ has the following properties is eventually periodic:

- $S_{t}$ is a numerical semigroup.
- $S_{t}$ is a symmetric numerical semigroup
- $S_{t}$ is an irreducible numerical semigroup.


## Not Always So Easy

The examples on the previous slides tended to be pretty easy to prove definable in parametric Presburger arithmetic. Some are harder:

Theorem (Bogart-Goodrick-W)
For every field $k$, the ith Betti number of the semigroup algebra $k\left[S_{t}\right]$ is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of $t$ ) that can be encoded in parametric Presburger arithmetic.

- Look at the fixed number of simplicial complexes on the generators. Do a homology calculation on those that have a certain property (squarefree divisor complex for $S_{t}$ ) that is definable in parametric Presburger [Bruns-Herzog].


## Not Always So Easy

The examples on the previous slides tended to be pretty easy to prove definable in parametric Presburger arithmetic. Some are harder:

Theorem (Bogart-Goodrick-W)
For every field $k$, the ith Betti number of the semigroup algebra $k\left[S_{t}\right]$ is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of $t$ ) that can be encoded in parametric Presburger arithmetic.

- Look at the fixed number of simplicial complexes on the generators. Do a homology calculation on those that have a certain property (squarefree divisor complex for $S_{t}$ ) that is definable in parametric Presburger [Bruns-Herzog].


## Not Always So Easy

The examples on the previous slides tended to be pretty easy to prove definable in parametric Presburger arithmetic. Some are harder:

Theorem (Bogart-Goodrick-W)
For every field $k$, the ith Betti number of the semigroup algebra $k\left[S_{t}\right]$ is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of $t$ ) that can be encoded in parametric Presburger arithmetic.

- Look at the fixed number of simplicial complexes on the generators. Do a homology calculation on those that have a certain property (squarefree divisor complex for $S_{t}$ ) that is definable in parametric Presburger [Bruns-Herzog].


## Not Always So Easy

The examples on the previous slides tended to be pretty easy to prove definable in parametric Presburger arithmetic. Some are harder:

Theorem (Bogart-Goodrick-W)
For every field $k$, the ith Betti number of the semigroup algebra $k\left[S_{t}\right]$ is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of $t$ ) that can be encoded in parametric Presburger arithmetic.

- Look at the fixed number of simplicial complexes on the generators. Do a homology calculation on those that have a certain property (squarefree divisor complex for $S_{t}$ ) that is definable in parametric Presburger [Bruns-Herzog].


## References

- For expository background, see Bogart-W, A plethora of polynomials: a toolbox for counting problems, The American Mathematical Monthly (2022).
- Applications to parametric semigroups, $S_{t}$, are in Bogart-Goodrick-W, Periodic behavior in families of numerical and affine semigroups via parametric Presburger arithmetic, Semigroup Forum 102 (2021).


## References

- For expository background, see Bogart-W, A plethora of polynomials: a toolbox for counting problems, The American Mathematical Monthly (2022).
- Applications to parametric semigroups, $S_{t}$, are in Bogart-Goodrick-W, Periodic behavior in families of numerical and affine semigroups via parametric Presburger arithmetic, Semigroup Forum 102 (2021).


## References

- For expository background, see Bogart-W, A plethora of polynomials: a toolbox for counting problems, The American Mathematical Monthly (2022).
- Applications to parametric semigroups, $S_{t}$, are in Bogart-Goodrick-W, Periodic behavior in families of numerical and affine semigroups via parametric Presburger arithmetic, Semigroup Forum 102 (2021).


## Thank You!

