Circularly polarized standing waves

Question: For a circularly polarized standing wave of light, is the magnetic field parallel to or perpendicular to the electric field?

Setup

The electric field turns like a jump rope. Here's a snapshot of the electric field (blue) at an instant.

Apply Faraday's Law

$$
\oint \vec{E} \cdot d \vec{\ell}=-\frac{d \Phi_{B}}{d t}
$$

to the magenta-colored loop. The line integral on the left is non-zero. But what is Φ_{B}, the flux of magnetic field through the surface bounded by the magenta-colored loop? How does that flux change with time?
\vec{B} perpendicular to \vec{E} scenario

Here the flux Φ_{B} is positive, and in fact it's at a maximum. As the blue "jump rope" rotates into the page, the magnetic field (green) follows, so the magnetic flux through the stationary magenta-lined loop decreases.

Now, because Φ_{B} is at a maximum, $d \Phi_{B} / d t$ is zero. Under this possibility, the left hand-side of Faraday's Law is non-zero, while the right-hand side is zero.

Bad idea.
\vec{B} parallel to \vec{E} scenario

Here the flux Φ_{B} is zero, but as the fields rotate, the flux changes. Under this possibility, the left hand-side of Faraday's Law is non-zero, while the right-hand side is also non-zero.

We haven't proven this possibility to be correct, but it's not impossible, whereas the " \vec{B} perpendicular to \vec{E} scenario" is impossible. (A more technical analysis shows that it is indeed correct.)

Here is the more technical analysis, suitable for students who have studied vector calculus: Start with the differential form of Faraday's Law

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} .
$$

For a circularly polarized standing wave,

$$
\vec{E}=E_{0} \sin (k x)[\pm \hat{y} \sin (\omega t)+\hat{z} \cos (\omega t)],
$$

where the \pm depends on whether the \vec{E} rotates clockwise or counterclockwise. From this it follows that

$$
\vec{\nabla} \times \vec{E}=E_{0} k \cos (k x)[-\hat{y} \cos (\omega t) \pm \hat{z} \sin (\omega t)]
$$

whence

$$
\frac{\partial \vec{B}}{\partial t}=E_{0} k \cos (k x)[\hat{y} \cos (\omega t) \mp \hat{z} \sin (\omega t)] .
$$

Integrating with respect to t,

$$
\begin{aligned}
\vec{B} & =\left(E_{0} / c\right) \cos (k x)[\hat{y} \sin (\omega t) \pm \hat{z} \cos (\omega t)] \\
& = \pm\left(E_{0} / c\right) \cos (k x)[\pm \hat{y} \sin (\omega t)+\hat{z} \cos (\omega t)],
\end{aligned}
$$

where the upper sign is shown (inadequately) in the sketch above.

