Entropy and work

(a) Isothermal expansion of an ideal gas:

$$
W=\int_{V_{i}}^{V_{f}} p d V=\int_{V_{i}}^{V_{f}} \frac{N R T}{V} d V=N R T \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

In our case $W=(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(400 \mathrm{~K}) \ln (2.00)=9220 \mathrm{~J}$.
(b) For an ideal gas, $E_{\text {int }}$ is a function of temperature alone and thus doesn't change in an isothermal process. Thus $Q=W$ and $\Delta S=Q / T=23.0 \mathrm{~J} / \mathrm{K}$.
(c) For any reversible adiabatic change, $\Delta S=0$.

