Tea kettle

The rate of water evaporation is proportional to the power dissipated at the resistive element, namely $i^{2} R$. If i increases by a factor of 1.21 , then power dissipation increases by a factor of $(1.21)^{2}=1.46$ (three significant figures), so the rate of water evaporation increases to (two significant figures)

$$
1.46 \times(0.41 \mathrm{cup} / \mathrm{min})=0.60 \mathrm{cup} / \mathrm{min}
$$

\llbracket Note that there's no need to convert $0.41 \mathrm{cup} / \mathrm{min}$ to the SI units of liter/s. The ratio of 1.46 applies regardless of units.]

Grading: 2 points for "rate proportional to power"; 2 points for $i^{2} R ; 2$ points for number; 2 points for two significant figures; 2 points for "cup/min" (either explicit or in text).

