The thick pipe of current

(a.) Qualitative considerations: By symmetry, the magnitude of \vec{B} can depend only upon the distance r from the cylinder axis. In addition, because \vec{B} is the sum of many circular contributions all in the plane perpendicular to the cylinder axis, \vec{B} must be in this plane. Finally, \vec{B} must be tangent to circles around the axis because any radial component would lead to

$$\oint_{\text{surface}} \vec{B} \cdot \hat{n} \, dA \neq 0$$

In summary, lines of \vec{B} must be circles centered on the cylinder axis.

Quantitative considerations: For any circle centered on the axis,

$$\vec{B} \cdot d\vec{\ell} = B(r) d\ell$$
 and $\oint \vec{B} \cdot d\vec{\ell} = B(r) \oint d\ell = B(r) 2\pi r$

so, from Ampere's law,

$$B(r) = \frac{\mu_0 I_{\text{linked}}(r)}{2\pi r}.$$

Meanwhile:

For
$$r < a$$
, $I_{\text{linked}}(r) = 0$.
For $r > b$, $I_{\text{linked}}(r) = i$.
For $a < r < b$, $\frac{I_{\text{linked}}(r)}{i} = \frac{\text{area between } a \text{ and } r}{\text{area between } a \text{ and } b} = \frac{\pi(r^2 - a^2)}{\pi(b^2 - a^2)}$, whence $I_{\text{linked}}(r) = i\frac{(r^2 - a^2)}{(b^2 - a^2)}$
us

Thus

$$B(r) = \begin{cases} 0 & r < a \\ \frac{\mu_0 i}{2\pi r} \frac{(r^2 - a^2)}{(b^2 - a^2)} & a < r < b \\ \frac{\mu_0 i}{2\pi r} & b < r \end{cases}$$

(b.) B(r) is continuous at r = a and r = b: B(a) = 0 and B(b) is appropriate for the \vec{B} of a long thin wire, as expected.

If a = 0 this is the situation of LSM example 12.7 on page 536 (changing our b to LSM's a). And sure enough, if you plug a = 0, and change b to a into the equation above you come up with the equation at the bottom of page 536.

(c.)

The graphs of the left-most and right-most parts of the function are straightforward. For the middle portion (a < r < b) note that the slope is

$$\frac{dB}{dr} = \frac{\mu_0 i}{2\pi (b^2 - a^2)} \left(1 + 2\frac{a^2}{r^2}\right)$$

so that (i) the slope is always postive — never zero or negative — and (ii) as r increases, the slope decreases.