The thick pipe of current

(a.) Qualitative considerations: By symmetry, the magnitude of \vec{B} can depend only upon the distance r from the cylinder axis. In addition, because \vec{B} is the sum of many circular contributions all in the plane perpendicular to the cylinder axis, \vec{B} must be in this plane. Finally, \vec{B} must be tangent to circles around the axis because any radial component would lead to

$$
\oint_{\text {surface }} \vec{B} \cdot \hat{n} d A \neq 0
$$

In summary, lines of \vec{B} must be circles centered on the cylinder axis.

Quantitative considerations: For any circle centered on the axis,

$$
\vec{B} \cdot d \vec{\ell}=B(r) d \ell \quad \text { and } \quad \oint \vec{B} \cdot d \vec{\ell}=B(r) \oint d \ell=B(r) 2 \pi r
$$

so, from Ampere's law,

$$
B(r)=\frac{\mu_{0} I_{\text {linked }}(r)}{2 \pi r}
$$

Meanwhile:
For $r<a, I_{\text {linked }}(r)=0$.
For $r>b, I_{\text {linked }}(r)=i$.
For $a<r<b, \frac{I_{\text {linked }}(r)}{i}=\frac{\text { area between } a \text { and } r}{\text { area between } a \text { and } b}=\frac{\pi\left(r^{2}-a^{2}\right)}{\pi\left(b^{2}-a^{2}\right)}$, whence $I_{\text {linked }}(r)=i \frac{\left(r^{2}-a^{2}\right)}{\left(b^{2}-a^{2}\right)}$.
Thus

$$
B(r)= \begin{cases}0 & r<a \\ \frac{\mu_{0} i}{2 \pi r} \frac{\left(r^{2}-a^{2}\right)}{\left(b^{2}-a^{2}\right)} & a<r<b \\ \frac{\mu_{0} i}{2 \pi r} & b<r\end{cases}
$$

(b.) $B(r)$ is continuous at $r=a$ and $r=b: B(a)=0$ and $B(b)$ is appropriate for the \vec{B} of a long thin wire, as expected.

If $a=0$ this is the situation of LSM example 12.7 on page 536 (changing our b to LSM's a). And sure enough, if you plug $a=0$, and change b to a into the equation above you come up with the equation at the bottom of page 536 .
(c.)

The graphs of the left-most and right-most parts of the function are straightforward. For the middle portion $(a<r<b)$ note that the slope is

$$
\frac{d B}{d r}=\frac{\mu_{0} i}{2 \pi\left(b^{2}-a^{2}\right)}\left(1+2 \frac{a^{2}}{r^{2}}\right)
$$

so that (i) the slope is always postive - never zero or negative - and (ii) as r increases, the slope decreases.

