Alfven's theorem

Griffiths, Electrodynamics, fourth edition, problem 7.63
(a) We have $\vec{J}=\sigma(\vec{E}+\vec{v} \times \vec{B})$, but $\sigma \rightarrow \infty$ and \vec{J} is finite, so $\vec{E}+\vec{v} \times \vec{B} \rightarrow 0$ or, to good approximation,

$$
\vec{E}=-\vec{v} \times \vec{B}
$$

Thus Faraday's law

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

implies

$$
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{v} \times \vec{B})
$$

(b) The sum of surfaces \mathcal{S}^{\prime} plus \mathcal{R} plus \mathcal{S} constitute a closed surface. Surfaces \mathcal{S}^{\prime} and \mathcal{R} are oriented with normal vectors pointing outward, while surface \mathcal{S} is oriented with normal vectors pointing inward (as suggested in the figure). Because

$$
\oint \vec{B} \cdot \hat{n} d A=0
$$

for any closed surface, we have

$$
\int_{\mathcal{S}^{\prime}} \vec{B} \cdot \hat{n} d A+\int_{\mathcal{R}} \vec{B} \cdot \hat{n} d A=\int_{\mathcal{S}} \vec{B} \cdot \hat{n} d A
$$

Meanwhile, using the method at the bottom of page 307 and top of page 308 (and an outward normal vector),

$$
\int_{\mathcal{R}} \vec{B} \cdot(\hat{n} d A)=\int_{\mathcal{P}} \vec{B} \cdot(d \vec{\ell} \times \vec{v} d t)=d t \int_{\mathcal{P}} \vec{B} \cdot(d \vec{\ell} \times \vec{v})=d t \int_{\mathcal{P}} d \vec{\ell} \cdot(\vec{v} \times \vec{B})=d t \int_{\mathcal{P}}(\vec{v} \times \vec{B}) \cdot d \vec{\ell}
$$

Whence

$$
\frac{d \Phi}{d t}=\int_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t} \cdot \hat{n} d A-\int_{\mathcal{P}}(\vec{v} \times \vec{B}) \cdot d \vec{\ell}
$$

According to Stokes, for any vector field \vec{F}

$$
\int_{\mathcal{P}} \vec{F} \cdot d \vec{\ell}=\int_{\mathcal{S}}(\nabla \times \vec{F}) \cdot \hat{n} d A
$$

Apply Stokes to the field $\vec{F}=\vec{v} \times \vec{B}$ giving

$$
\int_{\mathcal{P}}(\vec{v} \times \vec{B}) \cdot d \vec{\ell}=\int_{\mathcal{S}}(\nabla \times(\vec{v} \times \vec{B})) \cdot \hat{n} d A
$$

so

$$
\frac{d \Phi}{d t}=\int_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t} \cdot \hat{n} d A-\int_{\mathcal{S}}(\nabla \times(\vec{v} \times \vec{B})) \cdot \hat{n} d A=\int_{\mathcal{S}}\left(\frac{\partial \vec{B}}{\partial t}-\nabla \times(\vec{v} \times \vec{B})\right) \cdot \hat{n} d A=0
$$

QED.

