Complex Arithmetic

C．1：Complex sum and product

The sum is

$$
(2+3 i)+(-3+5 i)=-1+8 i
$$

the product is

$$
(5+7 i)(2-i)=5 \times 2-5 i+7 \times 2 i-7 i^{2}=10-5 i+14 i-7(-1)=17+9 i
$$

the square is

$$
(3+i)^{2}=(3+i)(3+i)=9+2 \times 3 i+i^{2}=9+6 i-1=8+6 i
$$

【Grading： 3 points for sum； 4 points for product； 3 points for square．】

C．2：Cartesian and polar forms of a complex number

 If$$
\begin{equation*}
x+i y=r e^{i \theta}=r(\cos \theta+i \sin \theta)=r \cos \theta+i r \sin \theta \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta \tag{2}
\end{equation*}
$$

These two real equations give x and y in terms of r and θ ．If they were linear equations，we could straightforwardly invert them to find r and θ in terms of x and y ．But they＇re not linear，so inversion requires a bit of play．First，square both equations and sum them：

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
& =r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r^{2}
\end{aligned}
$$

So

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}} \tag{3}
\end{equation*}
$$

Now，divide the second equation by the first

$$
\begin{equation*}
\frac{y}{x}=\frac{r \sin \theta}{r \cos \theta}=\tan \theta \tag{4}
\end{equation*}
$$

【Grading： 4 points for equation（2）； 3 points for equation（3）； 3 points for equa－ tion（4）．］

C．3：Express in polar form

$$
\begin{aligned}
2+\sqrt{12} i & =4 e^{i 60^{\circ}}=4 e^{i \pi / 3} \\
-1+\sqrt{3} i & =2 e^{i 120^{\circ}}=2 e^{i 2 \pi / 3}
\end{aligned}
$$

【Grading：diagram not needed， 5 points each，may use either degree or radian form．】

C．4：Multiplication of complex numbers

Using the Cartesian form，

$$
(2+\sqrt{12} i)(-1+\sqrt{3} i)=-2+2 \sqrt{3} i-\sqrt{12} i-\sqrt{36}=-8
$$

Using the polar form，

$$
\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

so，in our case

$$
\left(4 e^{i 60^{\circ}}\right)\left(2 e^{i 120^{\circ}}\right)=8 e^{i 180^{\circ}}=-8
$$

Multiplication of real numbers results in hops along the real line，but multiplication of complex numbers results in a＂spectacular trapeze－like swing on the complex plane．＂

【Grading： 5 points for each product．】

C．5：Polar form of i and 1

For any complex number $z=r e^{i \theta}$ the phases $\theta, \theta+2 \pi, \theta+4 \pi, \theta-2 \pi, \theta-4 \pi$ ，etc．， are all equally good．This is demonstrated on the complex plane below for the case $z=i$ ：the examples illustrate that $i=e^{i\left(\frac{1}{2} \pi+2 \pi n\right)}$ ，where $n=0, \pm 1, \pm 2, \ldots$ ．

Similarly， $1=e^{i 2 \pi n}$ ．This is obvious for $n=0$ ．If you like trigonometry you can write

$$
e^{2 \pi i n}=\cos (2 \pi n)+i \sin (2 \pi n)=1 \quad \text { for } n=0, \pm 1, \pm 2, \ldots
$$

but to me it＇s more apparent from the pictures．
【Grading： 5 points for any reasonable argument（diagram not required）， 5 points for reaching conclusion that $1=e^{i 2 \pi n}$ ．］

C．6：Complex conjugate

$z z^{*}=(x+i y)(x-i y)=x(x-i y)+i y(x-i y)=x^{2}-i x y+i y x+y^{2}=x^{2}+y^{2}=r^{2}$.
Alternatively

$$
z z^{*}=\left(r e^{i \theta}\right)\left(r e^{-i \theta}\right)=(r r)\left(e^{i \theta} e^{-i \theta}\right)=\left(r^{2}\right)\left(e^{i \theta-i \theta}\right)=r^{2} e^{0}=r^{2}
$$

【Grading： 10 points for either alternative；both not required．】

