Exit probabilities

(a) Assemblage presented in assignment:

In your mind, rotate the entire assemblage by angle α counterclockwise about the axis pointing right. This will not affect the results. ${ }^{1}$ Rotated assemblage:

After rotation the experiment is a vertical analyzer followed by an analyzer rotated from the vertical by $\theta=-\alpha$. (Or you can use $\theta=360^{\circ}-\alpha \ldots$. it's the same thing.) This is the situation of section 2.2 .7 . The probability of exiting from the + port is thus

$$
\cos ^{2}(-\alpha / 2)=\cos ^{2}(\alpha / 2)
$$

Or, if you had used $\theta=360^{\circ}-\alpha$, you would have found

$$
\cos ^{2}\left(\left(360^{\circ}-\alpha\right) / 2\right)=\left[\cos \left(180^{\circ}-\alpha / 2\right)\right]^{2}=[-\cos (\alpha / 2)]^{2}=\cos ^{2}(\alpha / 2)
$$

[As a check, note that in the special case $\alpha=0$ this expression gives the correct probability of 1 . In the special case $\alpha=180^{\circ}$, it gives the correct probability of 0 . In the special case $\alpha=90^{\circ}$ (discussed in section 2.2.5), it gives the correct probability of $\frac{1}{2}$.] The probability of exiting from the - port is

$$
1-\cos ^{2}(\alpha / 2)=\sin ^{2}(\alpha / 2)
$$

[^0](b) Assemblage presented in assignment:

This experiment is equivalent to an upside-down analyzer, with the atom emerging from its + port fed into a β-analyzer:

In your mind, rotate the entire assemblage by 180° giving:

Now the experiment is a vertical analyzer followed by an analyzer rotated $\theta=180^{\circ}+\beta$ relative to the vertical. The probability of exiting from the + port is

$$
\cos ^{2}\left(\left(180^{\circ}+\beta\right) / 2\right)=\left[\cos \left(90^{\circ}+\beta / 2\right)\right]^{2}=[-\sin (\beta / 2)]^{2}=\sin ^{2}(\beta / 2)
$$

The probability of exiting from the - port is

$$
1-\sin ^{2}(\beta / 2)=\cos ^{2}(\beta / 2)
$$

(c) Assemblage presented in assignment:

In your mind, rotate the entire assemblage by angle γ counterclockwise about the axis pointing right. Now it is the experiment of part (b), with $\beta=-\gamma$.

From the result of part (b), the probability of exiting from the + port is

$$
\sin ^{2}(\beta / 2)=\sin ^{2}(-\gamma / 2)=\sin ^{2}(\gamma / 2)
$$

The probability of exiting from the - port is

$$
1-\sin ^{2}(\gamma / 2)=\cos ^{2}(\gamma / 2)
$$

[^0]: ${ }^{1}$ Alternatively and equivalently, peer down the apparatus to the right, then rotate your head clockwise by angle α. You certainly cannot affect the results by tilting your head!

