Exit probabilities

(a) Assemblage presented in assignment:

In your mind, rotate the entire assemblage by angle α counterclockwise about the axis pointing right. This will not affect the results.¹ Rotated assemblage:

After rotation the experiment is a vertical analyzer followed by an analyzer rotated from the vertical by $\theta = -\alpha$. (Or you can use $\theta = 360^{\circ} - \alpha$...it's the same thing.) This is the situation of section 2.2.7. The probability of exiting from the + port is thus

$$\cos^2(-\alpha/2) = \cos^2(\alpha/2)$$

Or, if you had used $\theta = 360^{\circ} - \alpha$, you would have found

$$\cos^2((360^\circ - \alpha)/2) = [\cos(180^\circ - \alpha/2)]^2 = [-\cos(\alpha/2)]^2 = \cos^2(\alpha/2).$$

[As a check, note that in the special case $\alpha = 0$ this expression gives the correct probability of 1. In the special case $\alpha = 180^{\circ}$, it gives the correct probability of 0. In the special case $\alpha = 90^{\circ}$ (discussed in section 2.2.5), it gives the correct probability of $\frac{1}{2}$.] The probability of exiting from the – port is

$$1 - \cos^2(\alpha/2) = \sin^2(\alpha/2)$$

¹Alternatively and equivalently, peer down the apparatus to the right, then rotate your head clockwise by angle α . You certainly cannot affect the results by tilting your head!

(b) Assemblage presented in assignment:

This experiment is equivalent to an upside-down analyzer, with the atom emerging from its + port fed into a β -analyzer:

In your mind, rotate the entire assemblage by 180° giving:

Now the experiment is a vertical analyzer followed by an analyzer rotated $\theta = 180^{\circ} + \beta$ relative to the vertical. The probability of exiting from the + port is

$$\cos^2((180^\circ + \beta)/2) = [\cos(90^\circ + \beta/2)]^2 = [-\sin(\beta/2)]^2 = \sin^2(\beta/2).$$

The probability of exiting from the - port is

$$1 - \sin^2(\beta/2) = \cos^2(\beta/2).$$

(c) Assemblage presented in assignment:

In your mind, rotate the entire assemblage by angle γ counterclockwise about the axis pointing right. Now it is the experiment of part (b), with $\beta = -\gamma$.

From the result of part (b), the probability of exiting from the + port is

$$\sin^2(\beta/2) = \sin^2(-\gamma/2) = \sin^2(\gamma/2).$$

The probability of exiting from the - port is

$$1 - \sin^2(\gamma/2) = \cos^2(\gamma/2).$$