Oberlin College Physics 212, Fall 2021

## Model Solutions to Assignment 5

Interferometry: Using light waves as a ruler (a)


Reflection at glass-air interface: high to low, phase change no.
Reflection at air-plastic interface: low to high, phase change $\pi$.
Each bright band corresponds to an increase in thickness of $\lambda / 2$.
There are six bright bands, so the thickness at right is $3 \lambda=1.8 \mu \mathrm{~m}$.
(b)

Reflection at glass-water interface: high to low, phase change no.
Reflection at water-plastic interface: high to low, phase change no.
Thus the zero thickness band is bright.
Each dark band corresponds to an increase in thickness of $(\lambda / n) / 2$.
The wavelength in water is not 600 nm but $\lambda / n=(600 \mathrm{~nm}) / 1.33=450 \mathrm{~nm}$.
So $1.8 \mu \mathrm{~m}$ now equals four wavelengths.
So there will be eight dark bands.


【Grading: 4 points for part (a); 3 points for "zero thickness band is bright" in part (b); 3 points for "eight dark bands" in part (b).】

## Maxima in the single-slit diffraction intensity curve

The intensity is

$$
I(\theta)=I_{m}\left(\frac{\sin \alpha}{\alpha}\right)^{2} \quad \text { where } \quad \alpha=\frac{\pi a}{\lambda} \sin \theta .
$$

Extrema fall where $d I / d \theta=0$. A frontal assault on taking the derivative of

$$
I(\theta)=I_{m}\left(\frac{\sin [(\pi a / \lambda) \sin \theta]}{[(\pi a / \lambda) \sin \theta]}\right)^{2}
$$

would likely fail. (See "The Charge of the Light Brigade" by Alfred, Lord Tennyson: "Into the valley of death rode the six hundred.") Instead, use the chain rule: Define $z=\sin \alpha / \alpha$, and then

$$
\begin{aligned}
\frac{d I}{d \theta} & =\frac{d I}{d z} \frac{d z}{d \alpha} \frac{d \alpha}{d \theta} \\
& =I_{m}(2 z)\left(\frac{\alpha \cos \alpha-\sin \alpha}{\alpha^{2}}\right)\left(\frac{\pi a}{\lambda} \cos \theta\right) \\
& =\frac{2 I_{m} \pi a}{\lambda}\left(\frac{\sin \alpha}{\alpha}\right)\left(\frac{\alpha \cos \alpha-\sin \alpha}{\alpha^{2}}\right) \cos \theta .
\end{aligned}
$$

An extremum falls when the above equals zero

Either $\sin \alpha=0$, in which case $I(\theta)=0$ and we have a minimum, or else $\alpha \cos \alpha-\sin \alpha=0$, in which case $I(\theta) \neq 0$ and we have a maximum.

Thus the condition for a maximum is

$$
\alpha=\tan \alpha .
$$

$\llbracket$ Grading: 3 points for writing down intensity formula; 1 point for realizing $d I / d \theta=0 ; 3$ points for taking the derivative (full credit even if $d \alpha / d \theta$ is not executed); 1 point for rejecting $\sin \alpha=0 ; 2$ points for condition $\alpha=\tan \alpha$.]

Six solutions concerning complex arithmetic are in a separate document.

