Oberlin College Physics 212, Fall 2021

Model Solutions to Assignment 6

Wien displacement law

Like all physics problems, there are multiple ways to solve this one. (That's why I call these documents "model solutions" rather than "correct answers".) Here I present two possible solutions: the first direct and the second insightful.

Direct solution: To find the maximum of the energy

$$E_{bb}(\lambda) = \left(\frac{hc/\lambda}{e^{(hc/\lambda)/(k_BT)} - 1}\right) \frac{8\pi V}{\lambda^4} d\lambda$$

take the derivative with respect to lambda and set equal to zero:

$$\frac{E_{bb}(\lambda)}{d\lambda} = 0. \tag{1}$$

A frontal assault on this derivative is likely to fail. Instead, define

$$x = \frac{hc/\lambda}{k_B T}$$

and use the chain rule

$$\frac{dE_{bb}(\lambda)}{d\lambda} = \frac{E_{bb}(x)}{dx}\frac{dx}{d\lambda} = \frac{dE_{bb}(x)}{dx}\left(-\frac{x}{\lambda}\right).$$

Now

$$E_{bb}(x) = \left(\frac{x\,k_BT}{e^x - 1}\right) \left(\frac{k_BT}{hc}x\right)^4 8\pi V\,d\lambda = \left(\frac{x^5}{e^x - 1}\right) \frac{(k_BT)^5}{(hc)^4} 8\pi V\,d\lambda$$

 So

$$\frac{dE_{bb}(x)}{dx} = \left(\frac{(e^x - 1)5x^4 - e^x x^5}{(e^x - 1)^2}\right) \frac{(k_B T)^5}{(hc)^4} 8\pi V \, d\lambda$$

$$= x^4 \left(\frac{(e^x - 1)5 - e^x x}{(e^x - 1)^2}\right) \frac{(k_B T)^5}{(hc)^4} 8\pi V \, d\lambda$$

$$= -x^4 \left(\frac{e^x (x - 5) + 5}{(e^x - 1)^2}\right) \frac{(k_B T)^5}{(hc)^4} 8\pi V \, d\lambda$$
(2)

and

$$\frac{dE_{bb}(\lambda)}{d\lambda} = x^5 \left(\frac{e^x(x-5)+5}{(e^x-1)^2}\right) \frac{(k_B T)^5}{(hc)^4} \frac{8\pi V}{\lambda} d\lambda.$$
(3)

This derivative has zeros at x = 0 and at $x \to \infty$, but the one that interests us is the finite positive value \hat{x} where $e^x(x-5) + 5 = 0$. (You can solve this equation numerically to find that $\hat{x} \approx 4.97$, but you don't *need* to find this number. It would also be a good idea to take a second derivative to prove that this is a maximum rather than a minimum, but this also is not required.)

The location $\hat{\lambda}$ of the wavelength holding maximum energy is related to \hat{x} through

$$\hat{x} = \frac{hc/\hat{\lambda}}{k_B T} \tag{4}$$

whence

$$\hat{\lambda} = \frac{hc/\hat{x}}{k_B T} = \frac{b}{T}.$$
(5)

[[Grading for direct strategy: 2 points for setting out the strategy of taking the derivative and setting it equal to zero [equation (1) or the equivalent]; 2 points for producing equation (2); 1 point for equation (3); 3 points for (4); 2 points for (5).]]

Insightful solution: Writing the Planck radiation law

$$\left(\frac{hc/\lambda}{e^{(hc/\lambda)/(k_BT)}-1}\right)\frac{8\pi V}{\lambda^4}d\lambda$$

in terms of

$$x = \frac{hc/\lambda}{k_BT}$$

shows that the energy density in blackbody radiation is proportional¹ to

$$\frac{x^5}{e^x - 1}.\tag{6}$$

How does this function behave? I can think of two approaches:

- 1. Graph the function using your favorite calculator, spreadsheet, or other technology. You will find a single maximum.
- 2. For small $x, e^x \approx 1 + x$ so this function is approximately x^4 . For large x, this function is approximately $x^5 e^{-x}$. Thus this function starts at zero and rises, then falls back to zero as $x \to \infty$. There's got to be a maximum.

Call the location² of this maximum \hat{x} .

The location $\hat{\lambda}$ of the wavelength holding maximum energy is related to \hat{x} through

$$\hat{x} = \frac{hc/\hat{\lambda}}{k_B T} \tag{7}$$

whence

$$\hat{\lambda} = \frac{hc/\hat{x}}{k_B T} = \frac{b}{T}.$$
(8)

[[Grading for insightful strategy: 2 points for producing equation (6); 3 points for any argument that "the function (6) has a maximum"; 3 points for (7); 2 points for (8).]]

$$E_{bb} = \frac{x^5}{e^x - 1} \frac{(k_B T)^5}{(hc)^4} 8\pi V \, d\lambda$$

but even without knowing the proportionality constant, independent of λ , it's clear that E_{bb} and equation (6) are proportional.

²It so happens that \hat{x} is the one finite positive solution to $e^{\hat{x}}(\hat{x}-5)+5=0$, and that $\hat{x} \approx 4.97$, but you can solve the problem without uncovering either of these facts.

¹In fact, the equality is that

Rephrasing the Einstein relation

 $E = hc/\lambda$ but $\lambda = c/f$ so E = hf. But $\omega = 2\pi f$ and $\hbar = h/2\pi$, so $E = \hbar\omega$.

[[Grading: 10 points for correct argument; 7 points for any reasonable failure.]]

Compton scattering

(a) Using the figure in the problem statement, it's straightforward to assign before and after energy and momenta in terms of initial photon energy E_0 , final photon energy E, final electron momentum p, and the angles θ and ϕ . The only tricky part might be the final electron energy, which we call E_{fe} , given through

$$E_{fe}^{2} - (pc)^{2} = (mc^{2})^{2}$$

or $E_{fe} = \sqrt{(mc^{2})^{2} + (pc)^{2}}.$

The assignments are then

	initial	initial	final	final
	photon	electron	photon	electron
energy	E_0	mc^2	E	$\sqrt{(mc^2)^2 + (pc)^2}$
x-momentum	E_0/c	0	$(E/c)\cos\theta$	$+p\cos\phi$
y-momentum	0	0	$(E/c)\sin\theta$	$-p\sin\phi$
<i>z</i> -momentum	0	0	0	0

Since it's easier to observe the scattered photon than the scattered electron, we desire a relation between E_0 , E, and θ , eliminating the quantities p and ϕ . (The conservation of energy, x-momentum, and y-momentum provide three equations, so we can eliminate two variables and have one equation left.)

(b) First get rid of ϕ : According to the conservation of x-momentum,

$$E_0/c - (E/c)\cos\theta = p\cos\phi$$

while according to the conservation of y-momentum,

$$(E/c)\sin\theta = p\sin\phi.$$

Square both sides of both equations, then sum to eliminate ϕ (using $\sin^2 \phi + \cos^2 \phi = 1$):

$$(E_0/c)^2 - 2(E_0/c)(E/c)\cos\theta + (E/c)^2\cos^2\theta = p^2\cos^2\phi$$

$$(E/c)^2\sin^2\theta = p^2\sin^2\phi$$

$$(E_0/c)^2 - 2(E_0/c)(E/c)\cos\theta + (E/c)^2 = p^2$$

$$E_0^2 - 2E_0E\cos\theta + E^2 = (pc)^2.$$
(9)

(c) Now work towards getting rid of p. Invoke energy conservation:

$$E_{0} + mc^{2} = E + \sqrt{(mc^{2})^{2} + (pc)^{2}}$$

$$E_{0} - E + mc^{2} = \sqrt{(mc^{2})^{2} + (pc)^{2}}$$

$$(E_{0} - E)^{2} + 2(E_{0} - E)mc^{2} + (mc^{2})^{2} = (mc^{2})^{2} + (pc)^{2}$$

$$E_{0}^{2} - 2E_{0}E + E^{2} + 2(E_{0} - E)mc^{2} = (pc)^{2}.$$
(10)

Finally, combine equations (9) and (10) to eliminate p:

$$-2E_0E + 2(E_0 - E)mc^2 = -2E_0E\cos\theta$$

(E_0 - E)mc^2 = E_0E(1 - \cos\theta).

(d) Divide both sides of the above by E_0E to find

$$\left(\frac{1}{E} - \frac{1}{E_0}\right)mc^2 = (1 - \cos\theta),$$

then use

$$\frac{1}{E} = \frac{\lambda}{hc}$$

to find

$$\lambda - \lambda_0 = \frac{h}{mc} (1 - \cos \theta).$$

(e) Because $\cos \theta$ ranges from -1 to +1, the outgoing wavelength λ is always *bigger* than the incoming wavelength λ_0 , except that when $\theta = 0$, the two are the same.

The greater the angle of scattering, the larger the wavelength increase.

 $[\![Grading: 3 \text{ points for (a)}; 2 \text{ points each for (b) through (e)}; graph not required at (e).]\!]$

Rephrasing the de Broglie relation

 $p = h/\lambda$ but $k = 2\pi/\lambda$ and $\hbar = h/2\pi$ so $p = \hbar k$.

 $\llbracket Grading:$ 10 points for correct argument; 7 points for any reasonable failure. \rrbracket

Questions (for chapter 1)

 $[\![Grading: 10 \text{ points for any decent attempt; 5 points for "I can't think of any-thing."; 0 points for no answer at all.]]$