Oberlin College Physics 212, Fall 2021 semester

Model Solutions to Sample Final Exam

1. Sketch the seventh energy eigenfunction for the potential below.

Answer: Wavefunction will be symmetric about the origin, with six nodes, with shorter wavelength and smaller amplitude near the origin.

2. Is the nucleus ${}_{5}^{12}B$ stable or unstable to beta decay? If unstable, how does it decay? Explain how you know.

Answer: See pages 22–23 of the "Notes on Nuclear and Elementary Particle Physics".

5. A free electron is said to absorb a photon. Do you believe this claim? Support your answer.

Answer: Initial, lab frame:

$$\begin{array}{c|c} E & p \\ \hline electron & m_e c^2 & 0 \\ photon & E_{\gamma} & E_{\gamma}/c \\ total & m_e c^2 + E_{\gamma} & E_{\gamma}/c \end{array}$$

conserved invariant:

$$E^{2} - (pc)^{2} = (m_{e}c^{2} + E_{\gamma})^{2} - (E_{\gamma})^{2} = (m_{e}c^{2})^{2} + 2m_{e}c^{2}E_{\gamma}$$

Final, electron's frame:

$$\begin{array}{c|c} E & p \\ \hline electron & m_e c^2 & 0 \\ \end{array}$$

conserved invariant:
$$E^2 - (pc)^2 = (m_e c^2)^2$$

Setting the two conserved invariants equal, we conclude $E_{\gamma} = 0$. A free electron can't absorb a photon.

6. The hydrogen atom state $|1s\rangle$ has energy -Ry, the state $|2p\rangle$ has energy $-\frac{1}{4}Ry$. A hydrogen atom starts off in state $\frac{4}{5}|1s\rangle + \frac{3}{5}|2p\rangle$. How much time elapses before the atom returns to this initial state?

Answer: This initial state evolves in time to

$$\begin{aligned} & \frac{4}{5}e^{-(i/\hbar)E_{1s}t}|1s\rangle + \frac{3}{5}e^{-(i/\hbar)E_{2p}t}|2p\rangle \\ &= \frac{4}{5}e^{+(i/\hbar)Ryt}|1s\rangle + \frac{3}{5}e^{+(i/\hbar)\frac{1}{4}Ryt}|2p\rangle \\ &= e^{+(i/\hbar)Ryt}\left[\frac{4}{5}|1s\rangle + \frac{3}{5}e^{-(i/\hbar)\frac{3}{4}Ryt}|2p\rangle\right] \end{aligned}$$

The exponential in front of the square brackets is a physically irrelevant global phase factor. The state comes back to the initial state whenever

$$e^{-(i/\hbar)\frac{3}{4}\operatorname{Ry} t} = 1$$

$$(1/\hbar)\frac{3}{4}\operatorname{Ry} t = 2\pi (\text{integer})$$

$$t = \frac{2\pi\hbar}{(3/4)\operatorname{Ry}} (\text{integer})$$

The shortest such time is of course $(2\pi\hbar)/(\frac{3}{4}$ Ry).

7. Electrons pass through two slits separated by 3.68 nm and result in interference maxima separated by 2.57 degrees. What was the momentum of the incoming electrons?

Strategy: The first sentence sounds like a two-slit intereference problem, but the second sentence asks about momentum. How is that supposed to fit together? We need to use the first sentence to find the electron wavelength λ , then employ the de Broglie formula $\lambda = h/p$.

Implement 1: find λ . The formula for interference maxima is $d\sin(\theta) = m\lambda$. For very small angles, like 2.57 degrees, $\sin(\theta) \approx \theta$ (in radians). Thus adjacent interference maxima separated by $\Delta\theta$ correspond to a wavelength of $d\Delta\theta = \lambda$. Converting 2.57 degrees to radians results in

$$\lambda = (3.68 \text{ nm}) \left[(2.57 \text{ deg}) \frac{\pi \text{ rad}}{180 \text{ deg}} \right] = 0.165 \text{ nm}.$$

Implement 2: find p. Use $p = h/\lambda$, so

$$p = \frac{6.626 \times 10^{-34} \text{ kg} \cdot \text{m}^2/\text{s}}{1.65 \times 10^{-10} \text{ m}} = 4.02 \times 10^{-24} \text{ kg} \cdot \text{m/s}.$$