Oberlin College Physics 103, Fall 2023

Model Solutions to Assignment 2

Problems from College Physics by P.P. Urone and R. Hinrichs.
All these trajectory problems are solved based on these five equations: x-motion (constant horizontal velocity):

$$
\begin{align*}
v_{x}(t) & =v_{x, 0} \tag{1}\\
x(t) & =x_{0}+v_{x, 0} t \tag{2}
\end{align*}
$$

y-motion (constant downward acceleration):

$$
\begin{align*}
v_{y}(t) & =v_{y, 0}-g t \tag{3}\\
y(t) & =y_{0}+v_{y, 0} t-\frac{1}{2} g t^{2} \tag{4}\\
v_{y}^{2}(y) & =v_{y, 0}^{2}-2 g\left(y-y_{0}\right) \tag{5}
\end{align*}
$$

Chapter 3, problem 26

(a) Speed striking ground. For horizontal component use equation (1). For vertical component use equation (5). Ball strikes when $y=y_{0}$, so $v_{y}^{2}=v_{y, 0}^{2}$, so

$$
\text { striking speed }=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(16 \mathrm{~m} / \mathrm{s})^{2}+(12 \mathrm{~m} / \mathrm{s})^{2}}=\sqrt{(20 \mathrm{~m} / \mathrm{s})^{2}}=20 \mathrm{~m} / \mathrm{s}
$$

(b) Ball strikes ground at time t_{S} when $v_{y}\left(t_{S}\right)=-12 \mathrm{~m} / \mathrm{s}$. So use equation (3): $-12 \mathrm{~m} / \mathrm{s}=12 \mathrm{~m} / \mathrm{s}-g t_{S}$, whence $t_{S}=(24 \mathrm{~m} / \mathrm{s}) / g=2.4 \mathrm{~s}$.
(c) At maximum height $v_{y}=0$, so use equation (5): $0=v_{y, 0}^{2}-2 g h_{\max }$, whence $h_{\max }=v_{y, 0}^{2} /(2 g)=$ $(12 \mathrm{~m} / \mathrm{s})^{2} /(2 g)=7.3 \mathrm{~m}$.
【Grading: 1 point for free. Each part [(a), (b), and (c)] is worth three points: 1 point for setup; 1 point for execution to get the right number; 1 point for getting two significant figures and proper units.]
Chapter 3, problem $27 \quad$ In this problem $v_{y, 0}=0$.
(a) How long in air? Strikes ground at time t_{S}, that is $y\left(t_{S}\right)=0$, so use equation (4)

$$
\begin{aligned}
0 & =y_{0}-\frac{1}{2} g t_{S}^{2} \\
\frac{1}{2} g t_{S}^{2} & =y_{0} \\
t_{S} & =\sqrt{2 y_{0} / g}=\sqrt{2(60.0 \mathrm{~m}) /\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=3.50 \mathrm{~s}
\end{aligned}
$$

(b) Launch speed? Travels 100.0 m in 3.50 s so

$$
v_{0, x}=\frac{100.0 \mathrm{~m}}{3.50 \mathrm{~s}}=28.6 \mathrm{~m} / \mathrm{s}
$$

(c) Vertical velocity at striking ground comes from equation (5):

$$
\begin{aligned}
v_{y}^{2}(y) & =-2 g\left(y-y_{0}\right) \\
v_{y}^{2} & =-2 g\left(0-y_{0}\right) \\
v_{y} & =-\sqrt{2 g y_{0}}=-\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(60.0 \mathrm{~m})}=-34.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

（d）Horizontal velocity at striking ground is $28.6 \mathrm{~m} / \mathrm{s}$ ．
【Grading： 1 point for part（d）； 3 points for each of（a），（b），and（c）．For these three parts， 1 point for setup， 1 point for execution， 1 point for correct units and significant figures．】

Chapter 3，problem 34

In this problem，

$$
\begin{aligned}
v_{0, x} & =(30 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ}=15 \mathrm{~m} / \mathrm{s} \\
v_{0, y} & =(30 \mathrm{~m} / \mathrm{s}) \sin 60^{\circ}=26 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

（a）To find the height H at time $t=4.0 \mathrm{~s}$ ，use equation（4）：

$$
H=1.5 \mathrm{~m}+(26 \mathrm{~m} / \mathrm{s})(4.0 \mathrm{~s})-\frac{1}{2} g(4.0 \mathrm{~s})^{2}=27 \mathrm{~m}
$$

（b）The maximum height comes when $v_{y}=0$ ，so use equation（5）：

$$
\begin{aligned}
v_{y}^{2} & =v_{0, y}^{2}-2 g\left(y-y_{0}\right) \\
0 & =v_{0, y}^{2}-2 g\left(h_{\max }-y_{0}\right) \\
v_{0, y}^{2} /(2 g) & =h_{\max }-y_{0} \\
h_{\max } & =v_{0, y}^{2} /(2 g)+y_{0}=36 \mathrm{~m}
\end{aligned}
$$

（c）Horizontal component of velocity is a constant $15 \mathrm{~m} / \mathrm{s}$ ．Vertical component obeys equation（5）：

$$
\begin{aligned}
v_{y}^{2} & =v_{0, y}^{2}-2 g\left(y-y_{0}\right) \\
& =(26 \mathrm{~m} / \mathrm{s})^{2}-2 g(27 \mathrm{~m}-1.5 \mathrm{~m})=180.6 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

（Because this is an intermediate result，I＇m keeping four significant figures，to be rounded down at the final stage．）So the speed at impact is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(15 \mathrm{~m} / \mathrm{s})^{2}+180.6 \mathrm{~m}^{2} / \mathrm{s}^{2}}=20 \mathrm{~m} / \mathrm{s}
$$

【Grading： 1 point for free．Each part［（a），（b），and（c）］is worth three points： 1 point for setup； 1 point for execution to get the right number； 1 point for getting two significant figures and proper units．］

Chapter 3，problem 43

According to $\mathrm{U} \& \mathrm{H}$ equation（3．71），the range of a projectile is $v_{0}^{2} \sin \left(2 \theta_{0}\right) / g$ ．The maximum range comes when $\sin \left(2 \theta_{0}\right)=1$ ，so that maximum range is v_{0}^{2} / g ．For $v_{0}=30 \mathrm{~m} / \mathrm{s}$ ，this maximum range is 92 m ，which is a bit less than the width of a soccer field．
«Grading： 5 points for use of range equation； 5 points for number．】

Chapter 3，problem 44

I will use：t_{B} for time when basketball reaches basket，x_{B} for distance to the basket，and h for the height of the basket above its launch point（ 2 feet）．
I will apply equation（2）to the instant when the ball enters the basket：

$$
x_{B}=v_{0, x} t_{B}
$$

And I will apply equation（4）to that same instant：

$$
h=v_{0, y} t_{B}-\frac{1}{2} g t_{B}^{2}
$$

We know h, x_{B} ，and g ．The equations involve the unknown t_{B} ，but we＇re not asked for t_{B} ．So solve the first equation for t_{B} and plug into the second：

$$
\begin{aligned}
h & =\frac{v_{0, y}}{v_{0, x}} x_{B}-\frac{1}{v_{0, x}^{2}} \frac{x_{B}^{2} g}{2} \\
\frac{h}{x_{B}} & =\frac{\sin \theta_{0}}{\cos \theta_{0}}-\frac{1}{\cos ^{2} \theta_{0}} \frac{x_{B} g}{2 v_{0}^{2}} .
\end{aligned}
$$

I can＇t think of any analytic way of solving this equation，so I wrote a spreadsheed evaluating it for every angle from 0° to 89° ．（I knew that if I tried evaluating it at $90^{\circ} \mathrm{I}$＇d be dividing by zero．）The left hand side is $h / x_{B}=(2 \mathrm{ft}) /(10 \mathrm{ft})=0.2$ ．The constant on the right is $x_{B} g / 2 v_{0}^{2}=0.225$ ．I found that the right hand side equaled 0.2 at 26° and 80° ．
【Grading： 4 points for using equations（2）and（4）； 4 points for setting up the equation involving angle； 2 points for any numerical solution．］

Chapter 3，problem 48

When you follow the suggestions，you find

$$
a=\frac{v_{0, y}}{v_{0, x}}, \quad b=-\frac{g}{2 v_{0, x}^{2}} .
$$

【Grading： 7 points for any reasonable start； 3 points for actually finding these results for a and b ．】

