Oberlin College Physics 103, Fall 2023

Model Solutions to Assignment 4

Problems from College Physics by P.P. Urone and R. Hinrichs.

Chapter 4, problem 5

First:

$$
\begin{aligned}
\text { net force } & =\text { force due to person }- \text { force due to friction } \\
51 \mathrm{~N} & =\text { force due to person }-24 \mathrm{~N} \\
\text { force due to person } & =75 \mathrm{~N}
\end{aligned}
$$

Second: If no force due to person, then

$$
\begin{aligned}
\sum F & =m a \\
-24 \mathrm{~N} & =(24 \mathrm{~kg}) a \\
a & =\frac{-24 \mathrm{~N}}{24 \mathrm{~kg}}=-1.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Third: How far does it role before stopping?

$$
\begin{aligned}
v^{2}(x) & =v_{0}^{2}+2 a_{0}\left(x-x_{0}\right) \\
0 & =(1.5 \mathrm{~m} / \mathrm{s})^{2}+2\left(-1.0 \mathrm{~m} / \mathrm{s}^{2}\right) \text { (distance before stopping) } \\
\text { distance before stopping } & =\frac{(1.5 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-1.0 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.1 \mathrm{~m}
\end{aligned}
$$

【Grading: 1 point for free. Each part (first, second, and third) is worth three points: 1 point for setup; 1 point for execution to get the right number; 1 point for getting two significant figures and proper units.]
Chapter 4, problem 9
(a) The system of interest is the third child plus wagon.
(b) Free body diagram:

force due to friction $=12.0 \mathrm{~N}$
(c) Acceleration:

$$
\begin{aligned}
\sum F & =m a \\
(75.0 \mathrm{~N})-(90.0 \mathrm{~N})+(12.0 \mathrm{~N}) & =(23.0 \mathrm{~kg}) a \\
a & =\frac{-3.0 \mathrm{~N}}{23.0 \mathrm{~kg}}=-0.13 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(d) If frictional force were instead 15.0 N , acceleration would be zero.

【Grading: 1 point for each of parts (a) and (d); 4 points for (b): two points for 3 forces, two more points for forces in proper directions; 4 points for (c): one point for setup, one point for correct number, one point for units, one point for two significant digits.]

Chapter 4, problem 16

(a) For the brave rugby player:

$$
\begin{aligned}
\sum F & =m a \\
F_{B}-(800 \mathrm{~N}) & =(90.0 \mathrm{~kg})\left(-1.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{B} & =(90.0 \mathrm{~kg})\left(-1.20 \mathrm{~m} / \mathrm{s}^{2}\right)+800 \mathrm{~N}=692 \mathrm{~N}
\end{aligned}
$$

(b) For the winning rugby player:

$$
\begin{aligned}
\sum F & =m a \\
(800 \mathrm{~N})-F_{W} & =(110 \mathrm{~kg})\left(-1.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{W} & =800 \mathrm{~N}+(110 \mathrm{~kg})\left(1.20 \mathrm{~m} / \mathrm{s}^{2}\right)=932 \mathrm{~N}
\end{aligned}
$$

(c) Two free body diagrams:

for part (b):
force by brave player $=800 \mathrm{~N}$

π
acceleration $=1.20 \mathrm{~m} / \mathrm{s}^{2}$

【Grading: part (a): 1 point for setup, 1 point for answer; part (b): 1 point for setup, 1 point for answer; part (c): 3 points for free-body diagram on left ("brave"), 3 points for free-body diagram on right ("winning").]

Chapter 4, problem 22

When the baby is being weighed, it is not accelerating. So for all four systems shown in part (d) [upper cord, scale, lower cord, baby plus basket], the sum of forces must vanish.
(a) Mass of baby plus basket is

$$
m_{\mathrm{b}+\mathrm{b}}=\frac{T_{1}}{g}=\frac{55 \mathrm{~N}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}=5.6 \mathrm{~kg} .
$$

(b) $T_{1}=55 \mathrm{~N}$
(c) $T_{2}=T_{1}+m_{\text {scale }} g=55 \mathrm{~N}+(0.500 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=55 \mathrm{~N}+4.91 \mathrm{~N}=60 \mathrm{~N}$.
(d)

【Grading: each of parts (a), (b), and (c): 1 point for setup, 1 point for answer; part (d): 4 points.】

