Oberlin College Physics 103，Fall 2023

Model Solutions to Assignment 6

Problems from College Physics by P．P．Urone and R．Hinrichs．

Chapter 7，problem 6：Pulling a wagon

$$
\begin{aligned}
W & =(\text { component of force parallel to displacement }) \times(\text { displacement }) \\
& =\left(50 \mathrm{~N} \cdot \cos \left(30^{\circ}\right)\right) \times(30.0 \mathrm{~m}) \\
& =\left(50 \mathrm{~N} \cdot \frac{\sqrt{3}}{2}\right) \times(30.0 \mathrm{~m}) \\
& =1.3 \mathrm{~kJ} \text { or } 1.3 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

【Grading： 2 points for knowing what work is（specific equation not required，but student must know what work is）， 2 points for plugging in numbers， 2 points for number $1.3,2$ points for units， 2 points for two significant figures．］

Chapter 7，problem 7：Pushing a cart

（a）work done by friction $=(-35.0 \mathrm{~N})(20.0 \mathrm{~m})=-700 \mathrm{~J}$
（b）work done by gravity $=0$ because force of gravity is perpendicular to displacement
（c）work done by shopper

$$
\begin{aligned}
W_{\text {total }} & =\mathrm{KE}_{f}-\mathrm{KE}_{i} \\
\text { work done by friction }+ \text { work done by shopper } & =0 \\
\text { work done by shopper } & =- \text { work done by friction }=+700 \mathrm{~J}
\end{aligned}
$$

（d）

$$
\begin{aligned}
& \text { work done by shopper }=\vec{F}_{\text {shopper }} \cdot \vec{d}=F_{\text {shopper }}\left(\cos \left(25.0^{\circ}\right)\right)(20.0 \mathrm{~m}) \\
& F_{\text {shopper }}=\frac{\text { work done by shopper }}{\left(\cos \left(25.0^{\circ}\right)\right)(20.0 \mathrm{~m})}=\frac{+700 \mathrm{~J}}{\left(\cos \left(25.0^{\circ}\right)\right)(20.0 \mathrm{~m})}=38.6 \mathrm{~N}
\end{aligned}
$$

（e）total work done on cart $=0$
Notice that if we had executed this problem using force techniques，we would have needed to draw a detailed free body diagram．Using energy techniques we got the answer without that diagram．
【Grading： 2 points for each part．】

Chapter 7, problem 12: Stopping a car

Annika and I worked this problem together in class on Monday, 23 October. We found that the force needed to stop a car of mass m with initial velocity v_{i} over a distance d is

$$
\frac{m v_{i}^{2}}{2 d} .
$$

All that remains is to plug in the numbers. Remember to convert $90.0 \mathrm{~km} / \mathrm{h}$ to $25.0 \mathrm{~m} / \mathrm{s}$. The results are (a) 2.47 kN ; (b) 148 kN . Grading: For each part, 3 points for number, 1 point for units, 1 point for three significant figures.]

Chapter 7, problem 13: Bumper

This is the same abstract problem is problem 12, so all we need to do is plug in different numbers. The answer is 2.82 kN . 【Grading: 6 points for number, 2 points for units, 2 points for three significant figures.】

