Oberlin College Physics 103, Fall 2023

Model Solutions to Assignment 9: Rotation

Problems from College Physics by P.P. Urone and R. Hinrichs.
Chapter 10, problem 16: The torque of Zorch
Strategy: There are three stages to this problem:

First, find the torque using $\tau=F r$.
Second, find angular acceleration using $\tau=I \alpha$
Third, use the change in angular velocity through $\omega(t)=\omega_{0}+\alpha_{0} t$

I will use r_{e} for the earth's radius and m_{e} for its mass.
First stage: I'll call Zorch's force F_{Z}, so $\tau=F_{Z} r_{e}$. No need to put in numbers at this point.
Second stage: For the solid sphere earth (see table on page 397) $I=\frac{2}{5} m_{e} r_{e}^{2}$, so

$$
\begin{aligned}
\alpha & =\frac{\tau}{I}=\frac{F_{Z} r_{e}}{\frac{2}{5} m_{e} r_{e}^{2}}=\frac{5}{2} \frac{F_{Z}}{m_{e} r_{e}} \\
& =\frac{5}{2} \frac{4.00 \times 10^{7} \mathrm{~N}}{\left(5.97 \times 10^{24} \mathrm{~kg}\right)\left(6.38 \times 10^{6} \mathrm{~m}\right)}=2.62 \times 10^{-24} \mathrm{~s}^{-2}
\end{aligned}
$$

Third stage: We are given rotational periods, not angular velocities, but it's easy to convert because $T=2 \pi / \omega$. The initial and final angular velocities are

$$
\begin{aligned}
\omega_{i} & =\frac{2 \pi}{24.0 \mathrm{hr}}=\frac{2 \pi}{8.64 \times 10^{4} \mathrm{~s}}=7.27 \times 10^{-5} \mathrm{~s}^{-1} \\
\omega_{f} & =\frac{2 \pi}{28.0 \mathrm{hr}}=\frac{2 \pi}{1.01 \times 10^{5} \mathrm{~s}}=6.23 \times 10^{-5} \mathrm{~s}^{-1}
\end{aligned}
$$

Use these in

$$
\begin{aligned}
\omega_{f} & =\omega_{i}-\alpha_{0} t \\
t & =\frac{\omega_{f}-\omega_{i}}{-\alpha_{0}} \\
& =\frac{(6.23-7.27) \times 10^{-5} \mathrm{~s}^{-1}}{-2.62 \times 10^{-24} \mathrm{~s}^{-2}} \\
& =3.97 \times 10^{18} \mathrm{~s} .
\end{aligned}
$$

To get a better feel for this time you might convert it to 125 billion years. In contrast, the age of the universe (time to the big bang) is a mere 13.7 billion years.
【Grading: 2 points for starting out (for example, a figure, or a strategy), 2 points for each of the three stages, 1 point for unit "seconds" in final numerical answer, 1 point for three significant figures in final numerical answer. No need to convert to years, or to compare to the age of the universe.]

Chapter 10, problem 27: A bus with a flywheel

Using the table on page 397 we can find the moment of inertia of the flywheel (disk):

$$
I=\frac{1}{2} M_{\text {flywheel }} R^{2}=\frac{1}{2}(1500 \mathrm{~kg})(0.600 \mathrm{~m})^{2}=270 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(a) The translational energy required is

$$
\frac{1}{2} M_{\mathrm{bus}} v^{2}=\frac{1}{2}(10,000 \mathrm{~kg})(20.0 \mathrm{~m} / \mathrm{s})^{2}=2.00 \times 10^{6} \mathrm{~J}
$$

which demands

$$
\begin{aligned}
0.900(\text { energy stored in flywheel }) & =2.00 \times 10^{6} \mathrm{~J} \\
\text { energy stored in flywheel } & =2.22 \times 10^{6} \mathrm{~J} .
\end{aligned}
$$

Since the energy stored is $\frac{1}{2} I \omega^{2}$, we have

$$
\begin{aligned}
\frac{1}{2} I \omega^{2} & =2.22 \times 10^{6} \mathrm{~J} \\
\omega^{2} & =\frac{2\left(2.22 \times 10^{6} \mathrm{~J}\right)}{270 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=1.64 \times 10^{4} \mathrm{~s}^{-2} \\
\omega & =128 \mathrm{~s}^{-1}
\end{aligned}
$$

(This is 20.4 rotations per second: fast but not out of the question.)
(b) This part of the problem envisions the bus using the stored energy to go up a hill and still have speed $3.00 \mathrm{~m} / \mathrm{s}$ at the top, that is
0.900 (energy stored in flywheel) $-M_{\mathrm{bus}} g h=\frac{1}{2} M_{\mathrm{bus}}(3.00 \mathrm{~m} / \mathrm{s})^{2}$

$$
\begin{aligned}
h & =\left[0.900(\text { energy stored in flywheel }) / M_{\mathrm{bus}}-\frac{1}{2}(3.00 \mathrm{~m} / \mathrm{s})^{2}\right] / g \\
& =19.9 \mathrm{~m}
\end{aligned}
$$

【Grading: 1 point for finding I. 1 point for finding energy stored in flywheel. 2 points for finding number for $\omega, 1$ point for units s^{-1}, 1 point for three significant figures. 2 points for finding number for $h, 1$ point for units $\mathrm{m}, 1$ point for three significant figures.]

Chapter 10, problem 39: Grab onto a playground merry-go-round

We use conservation of angular momentum (kinetic energy is not conserved) between initial and final states:

$$
I_{i} \omega_{i}=I_{f} \omega_{f}
$$

Because

$$
f=\text { angular velocity in revolutions/second }=\frac{\omega}{2 \pi}
$$

there's no need to divide by 2π, just write

$$
I_{i} f_{i}=I_{f} f_{f}
$$

Recalling the expressions for moment of inertia of a merry-go-round disk and for a single child placed at its rim, the above equation becomes

$$
\left[\frac{1}{2} M_{\mathrm{mgr}} R^{2}\right] f_{i}=\left[\frac{1}{2} M_{\mathrm{mgr}} R^{2}+M_{\mathrm{child}} R^{2}\right] f_{f}
$$

You see that the radius R cancels out right and left: it's irrelevant.

$$
\begin{aligned}
{\left[\frac{1}{2} M_{\mathrm{mgr}}\right] f_{i} } & =\left[\frac{1}{2} M_{\mathrm{mgr}}+M_{\mathrm{child}}\right] f_{f} \\
f_{f} & =\left[\frac{M_{\mathrm{mgr}}}{M_{\mathrm{mgr}}+2 M_{\mathrm{child}}}\right] f_{i} \\
& =\left[\frac{120 \mathrm{~kg}}{120 \mathrm{~kg}+2(22.0 \mathrm{~kg})}\right](0.500 \mathrm{rev} / \mathrm{s}) \\
& =0.366 \mathrm{rev} / \mathrm{s}
\end{aligned}
$$

【Grading: 2 points for recognizing that angular momentum is conserved. 2 points for invoking the change in moment of inertia. 4 points for the number. 1 point for three significant figures. 1 point for units.]

