Physics 103 Elementary Physics I

Model Solutions to First Examination，Fall 2023

1．Runaway truck．An out－of－control truck enters a 118 m long runaway truck ramp at speed $26.6 \mathrm{~m} / \mathrm{s}$ ．What is the minimum constant acceleration the truck must experience to stop on the ramp？

Solution：We are given speeds and distances，not times，so the most relevant equation is

$$
\begin{aligned}
v^{2}(x) & =v_{0}^{2}+2 a_{0}\left(x-x_{0}\right) \\
0 & =v_{0}^{2}+2 a_{0}(\text { length }) \\
a_{0} & =-\frac{v_{0}^{2}}{2(\text { length })}=-\frac{(26.6 \mathrm{~m} / \mathrm{s})^{2}}{2 \times 118 \mathrm{~m}}=-3.00 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

【Grading： 2 points for $v(x)$ equation； 2 points for a_{0} solution； 2 points for numerical solution； 2 points for three significant figures； 2 points for dimensions of numerical solution．Negative sign optional．】

2．Lost in space．A pebble requires 0.87 s to reach the ground after being dropped from rest at height of 1.8 m ． What is the acceleration due to gravity？Which planet are you on？

Solution：We are given distances and times，not speeds，so the most relevant equation is（where t_{S} means＂time when the pebble strikes the ground＂）

$$
\begin{aligned}
y(t) & =y_{0}+v_{0} t-\frac{1}{2} a_{g} t^{2} \\
0 & =y_{0}-\frac{1}{2} a_{g} t_{S}^{2} \\
a_{g} & =\frac{2 y_{0}}{t_{S}^{2}}=\frac{2(1.8 \mathrm{~m})}{(0.87 \mathrm{~s})^{2}}=4.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Comparison to the information table（rounding to $g=10 \mathrm{~m} / \mathrm{s}^{2}$ ）suggests we are on planet TRAPPIST－1d．
【Grading： 2 points for $y(t)$ equation； 2 points for a_{g} solution； 2 points for numerical solution； 1 point for two significant figures； 1 points for dimensions of numerical solution； 2 points for comparison to table．】

4．Cliff drop．A pebble at rest drops from the top of a cliff．The time required to drop the first half of the cliff＇s height $\left(t_{h}\right)$ is of course less than the time required to drop the entire height of the cliff $\left(t_{e}\right)$ ，but how much less？Find the ratio t_{h} / t_{e} ．

Solution：Call the cliff height H ，the acceleration of gravity g ．Set coordinates with origin at base of cliff，positive upward．Then the position is

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2} \\
& x(t)=H-\frac{1}{2} g t^{2} .
\end{aligned}
$$

At half－way point

$$
\frac{1}{2} H=H-\frac{1}{2} g t_{h}^{2} \quad \text { whence } \quad t_{h}=\sqrt{H / g} .
$$

At entire drop

$$
0=H-\frac{1}{2} g t_{e}^{2} \quad \text { whence } \quad t_{e}=\sqrt{2 H / g} .
$$

Thus $t_{h} / t_{e}=1 / \sqrt{2} \approx 0.707$ ．（It makes sense that the first half of the journey should take more than half the time， because the pebble travels slowly on the first half，faster on the second half．）
\llbracket Grading： 2 points for general $x(t) ; 2$ points for $x(t)$ for this specific problem； 2 points for finding $t_{h} ; 2$ points for finding $t_{e} ; 2$ points for ratio．】］
3. Rocket-propelled sled.

【Grading: 1 point each for these ten features: $v(t)$: always non-negative, starts at zero, ends at zero, maximum at or near the fourth vertical dashed line, goes up steeply, goes down gradually; $a(t)$: initial acceleration positive (not zero), positive to left of velocity maximum, zero at velocity maximum, negative to right of velocity maximum, larger magnitude on left.]

